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Abstract. The brain is a vastly interconnected informationcessing network. In
humans, this network supports the rich mental spatee root of the imagination and
enables many flexible cognitive abilities such @smtific and artistic creativity. How the
brain implements these creative processes remamsfithe greatest mysteries in
science, and solving this mystery carries withpbasibility for deep understanding of
human nature, human potential, and machine inézltig. Logie has proposed that a key
substrate for human cognition is a “mental workgpdlcat enables mental
representations such as visual imagery to be fomnéddmnanipulated flexibly (1).
However, the neural basis of this workspace rem@aiiesly understood, partially because
existing experimental methods have limited abii@ystudy complex, higher-order mental
functions. Here we develop new methods to probstiiueture and dynamics of the large
scale networks underlying complex cognition. We these methods to show that the
mental manipulation of visual imagery is mediatgdadundamentally distributed
network that spans structures throughout the husnan. Our findings conflict with
dominant models that posit an anatomically modoéesis for working memory and
related processes. Instead, the component proaasdedying the mental workspace
appear to transcend anatomical modules, occurtindewvel of organization that is
fundamentally distributed across the brain. Rathan having a fixed anatomical basis,
the mental workspace appears to be mediated bseanetwork that can dynamically and
flexibly recruit existing cortical and subcorticalbnetworks for specific tasks. These
findings call for a shift in cognitive neuroscienmesearch away from functional
localization and localized neural circuits and tadvine study of organizational

principles that govern the large scale integratibmformation processing in the brain.
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Ch. 1: Introduction

A hallmark of human cognition is the ability to ate flexible mental
representations through conscious effort. Sucliti@sihave been studied via several
psychological constructs including working memory, fnental imagery (8), visuospatial
ability (9), mental models (10), analogical reasgnill), and the mental workspace (1).
The ability to work flexibly with mental represehtms underlies much of human life
from mundane tasks such as planning seating amsargs at family get-togethers to our
species’ greatest artistic and scientific achievase~or instance, Albert Einstein wrote
that his scientific thought process consisted prilypaf “certain signs and more or less
clear images which can be 'voluntarily' reproduaed combined” (12). In contrast,
chimpanzees, our closest living evolutionary retappear to lack fundamental aspects
of our flexible cognitive machinery such as symbdhought (13) and imagination (14,
15). How has the human brain enabled these exireoydabilities?

In a seminal experiment on the mental manipuladiovisual imagery, Shepard
and Metzler (1971) had participants mentally rothtee-dimensional objects to
determine whether they were the same as otheragithilee-dimensional objects (see
Figure S4.1 for example stimuli). Participants’a#an times correlated strongly with the
angle of rotation necessary to align the two oljesiiggesting that they had mentally
rotated an internal model in much the same wayhasamuld rotate a physical object.

Subsequent behavioral research explored other topesauch as mental paper folding



(17), the generation and analysis of mental andlocks (18), and mental simulations of
mechanical systems (10), a primary result beingrttental operations resemble the
corresponding physical ones. Other work has doctedesimilar processes in domains
such as mental time travel (19), creative synthefsmental imagery (20), and
visuospatial reasoning (21). Thus, the human kappears to support a mental space
similar to the physical world in which mental repeatations can be constructed,
manipulated, and tested in a flexible manner. Fohlg Logie (1), | will refer to this
cognitive system as the mental workspace.

A dominant model of the architecture of the mentatkspace is Baddeley’s
conception of working memory (7, 22), in which afral executive system controls the
maintenance and manipulation of representatiossilisystems such as the visuospatial
sketchpad (for visual representations) or the plugical loop (for verbal/auditory
representations). Working memory is often treated aognitive system responsible for
maintaining mental representations of limited $aeshort periods of time. Canonical
tests of working memory capacity such as the n-laamckmemory span tasks (23—-25)
reflect this viewpoint: In general, participantsshhold a variable number of items
online (numbers, letters, words, images, etc.sfone amount of time, often
accompanied by competing distractor stimuli. Wogkmemory abilities are closely
linked to control of attention (26) and intelligen(27). Recent work has established that
working memory capacity can be improved with traghand that this improvement can
transfer to other abilities such as fluid intelhge (28—31).

While behavioral work on the mental workspace id established, relatively

little is understood about the neural mechanisrasrttake it possible. Neuroimaging



studies have implicated widely-distributed regiohshe cortex in working memory (28,
32), with both lateral-frontal and parietal cortieativity commonly co-occurring in
working memory tasks. This fronto-parietal couplhrags been proposed as the core of a
network that mediates many higher order mentaltfans (33—-36). According to several
models, this network consists of a frontal exeausystem that directs attention over
contents located in parietal and surrounding modapecific regions (7, 37-41).
Supporting this view, Harrison and Tong (42) codéttode the contents of visual
working memory in early visual areas, and Oh arlttagues (43) found that auditory
imagery recruits frequency-specific regions of &ugicortex. In a meta-analysis of
neuroimaging studies of mental rotation, Zacks 8006und that regions throughout the
cortex and cerebellum were involved but that mduoglies placed at least part of the
machinery of mental rotation in the intraparietalcss and adjacent regions along with
the medial superior precentral cortex. Zacks sugddsat parietal regions maintain
representations of the objects being rotated aaidpifecentral motor cortex executes the
motor simulations.

However, empirical support for such anatomicallydular models of the mental
workspace derives in many cases from a failuréentb (or look for) relevant information
in regions outside those proposed by such modeB3(40, 44, 45). Other models and
mounting empirical evidence derived from new, netwand information-based
analytical techniques paint a more complex pictsuggesting that many high-level
cognitive processes occur at a level of organinatiat transcends any single neural
structure (46-51). These recent advances suggegirttcessing in the brain may be

much more distributed in nature than suspectedqusly. Therefore, one hypothesis of



the studies presented in this thesis is that th&taheiorkspace emerges out of the
distribution and sharing of informational procesgesughout the cortex. However, this
emergent organization would only become apparesttidied using analytical methods
that are sensitive to informational connectionsveen widely distributed network nodes.
A model of the brain as fundamentally distributechot new: Rumelhart’s and
McClelland’s (48) Parallel Distributed Processinggmosal gained wide interest in the
late 1980s and sparked a revolution in artifiailligence based on neural networks and
connectionist models of cognition. However, evahgthis model empirically has been
severely limited by technical limitations in the aserement and analysis of brain
activity. While functional magnetic resonance inmgg(fMRI) enables the indirect
measure of neural activity over the entire braiterpreting fMRI data in a connectionist
framework requires methods that have only recdygbyun to gain a foothold in the
neuroimaging community. Early fMRI research was dwted by univariate analyses
that limited inference to isolated voxels and emagad efforts to localize function to
such a degree that the field's early work has keened “neo-phrenology” (52). When
multivariate pattern analysis (MVPA) and relatecht@ques such as representational
similarity analysis (RSA) were introduced, theywidhe field to reframe questions in
terms of the informational roles and relationstopand between networks of brain
regions (53-56). A parallel line of methodologicedearch has sought to use existing
ideas in network analysis to characterize the lage network structure of the brain
(46, 49, 57). Recent advances in the analysigoftsiral and functional connectivity
have allowed both undirected (58, 59) and dire(€d 61) relationships between

widespread cortical and subcortical regions tonvestigated. These methods have set



the stage for a new approach to the brain as abeimserconnected, fundamentally

distributed information processing network.

The studies in this thesis build on the above tiegles to investigate the neural
architecture of the mental workspace. In ordetudysthe mental workspace as a
distributed network, a combination of existing armyel methods is used. In particular,
we develop and exploit new methods in the followangas:

e Relating classifier confusion to task structure. Multivariate classification techniques
usually rely on classification accuracy—the dedewhich a machine classifier can
distinguish between experimental conditions abdwance levels— as the measure of
classifier performance (62). While this measurevedl the investigator to probe
whether brain activity supports information thadtaiguishes between experimental
conditions, its interpretation can be uncertaimaleading when potential
differences between conditions exist in additioth® difference of interest. For
instance, differences in difficulty or attentiomEmands between two tasks could
result in above chance classification accuracyfdilihg to account for this
possibility could lead the investigator to concluldat the successful classification
was due to the designed contrast between condititmsever, classification
analyses also yield confusion matrices that rettweparticular patterns of confusion
between conditions. In designs with more than temddions, these confusion
matrices can be compared to the expected patterondfision that would occur due
to the structure of informational relationshipsviben conditions. Significant
correlation between the confusion matrices ance®pected or model similarity

structure between conditions can potentially pre\agidence for task-specific



evidence that goes beyond potential confoundintpfasuch as difficulty or
attention. Each of the three studies presentedisrthiesis use this technique in order
to provide robust evidence for task-specific preggsin the investigated regions of
interest.

Shared vs. distinct informational formats. Multivariate techniques have revealed that
information pertaining to many cognitive procesisedistributed widely in the cortex
(45, 63, 64). However, current techniques do nstirtjuish whether this information
occurs in a common or distinct format between netvmodes. This is an important
distinction, since anatomically modular theorieshaf mental workspace rely in part
on information being distributed yet specializetighout the cortex (40). Study 2
(Ch. 3) develops a novel method to investigata¢haionship between the
informational formats of network nodes.

Patterns of information flow. Understanding the flow of information between a
network’s nodes is necessary in order to underdtamdthat network functions.
Existing methods for assessing directed informatiiow are concerned primarily
with quantifying the degree to which processingme region influences later
processing in another region (60, 61). In this setieese methods are similar to
univariate analyses in that they can detect ineieas decreases in directed
connectivity, but are insensitive to informatiomtimay be carried via connectivity
patterns. In this dissertation we are not conceduettly with whether information
flows between nodes, since in a densely connedistlibuted network each node
will likely exert some degree of control over alher nodes. Rather, we are interested

in whether patterns of information flow between ertging processes that are



distributed among these nodes are informative atmautal workspace functions.
Study 2 develops a novel method to investigatertfoeemation carried by patterns of

information flow between network nodes.

The following chapters present the results of tisteeies that investigate the
distributed neural network underlying the mentalkspace, focusing specifically on
visual imagery because of its extensive existitegdiure. Study 1 (Ch. 2) investigates
the structure and dynamics of the neural netwaak shipports the mental manipulation
of visual imagery. Study 2 (Ch. 3) investigatesdisribution and flow of information in
this network that supports the representation aadipulation of visual imagery. Study 3
(Ch. 4) uses mental rotation as a case study @stigate how the mental workspace

recruits specialized subnetworks for specific fiord.



Ch. 2: Network structure and dynamics of the mental wor kspace

Abstract. The conscious manipulation of mental representati®central to many
creative and uniquely human abilities. How doeshilnman brain mediate such flexible
mental operations? Here, multivariate pattern aglyf functional magnetic resonance
imaging data reveals a widespread neural netwatkgérforms specific mental
manipulations on the contents of visual imageryltng patterns of neural activity
within this mental workspace track the sequenaafofmational transformations carried
out by these manipulations. The network switchés/&en distinct connectivity profiles

as representations are maintained or manipulated.

! This chapter was originally published as ref. (95)



I ntroduction

Albert Einstein described the elements of his gtfierthought as “certain signs
and more or less clear images which can be ‘volilyiteeproduced or combined” (12).
Creative thought in science as well as in otheralamsuch as the visual arts,
mathematics, music, and dance requires the cagadigxibly manipulate mental
representations. Cognitive scientists refer to ¢hjzacity as a “mental workspace” and
suggest that it is a key function of consciousr{é5$ involving the distribution of

information among widespread, specialized subdosn@&6).

How does the human brain mediate these flexibletaheperations? Behavioral
studies of the mental workspace, such as ShepdriVatrler’'s work on mental rotation
(16), have found that many mental operations cjossemble their corresponding
physical operations. This supports the view thatrttfental workspace can simulate the
physical world. Recent work in neuroscience hasiged on mental representations
instead of operations, showing that the contentssofal perception (53), visual imagery
(42), and even dreams (67) can be decoded fromitgdh visual cortex. These results
suggest that the same regions that mediate repa¢ioeis in sensory perception are also
involved in mental imagery. Yet, how the mind caampulate these representations
remains unknown. Many studies have found increasadity in frontal and parietal
regions associated with a range of high-level dognabilities (68, 69) including mental
rotation (33), analogical reasoning (34), workingmory (35), and fluid intelligence
(36). Together, these findings suggest that a dqmarietal network may form the core of
the mental workspace. We therefore hypothesizaderations on visual

representations in the mental workspace are reblimeugh the coordinated activity of a



distributed network of regions that spans at |&asital, parietal, and occipital cortices. A
strong test of this hypothesis would be to ask iaepatterns of neural activity in these
regions contain information about specific menf@mtions and whether these patterns

evolve over time as mental representations areputaied.

Figure 2.1. Experimental design
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the operation.
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In the present study, we tested this hypothesishking 15 participants to engage
in either maintenance or manipulation of visualgexy while we collected functional
magnetic resonance imaging (fMRI) measurementlsef heural activity. As stimuli,
we developed 100 abstract parts that could be awedbnto 2 x 2 figures (Figure 2.1A
& C). In a series of trials, participants mentatigintained a set of parts or a whole
figure, mentally constructed a set of four parts i figure, or mentally deconstructed a
figure into its four parts (Figure 2.1B). Stimuleve presented briefly at the beginning of
each trial, followed by a task prompt and a 6sydlaring which the participant
performed the indicated mental operation. At the einthe delay, the target output of the
operation was presented along with three similstrattors, and the participant indicated
the correct target (Figure 2.1D). Adjusting the ptewity of the stimuli allowed us to
equate for task difficulty by maintaining 2/3 acacy for each participant in each of the

four conditions (chance would be 1/4 correct; FegRrlE).

Results

As an initial region of interest (ROI) selectioropedure on the fMRI blood-
oxygenation-level-dependent (BOLD) data, we caraetla whole brain univariate
general linear model (GLM) analysis to identify iegs in which neural activity levels
differed between mental manipulation (constructgar deconstruct figure) and mental
maintenance (maintain parts or maintain figure)dttions. This analysis revealed 11
bilateral cortical and subcortical ROIs (Figure)2sggesting that a widespread network
mediated the manipulation tasks. All but two of R@ls (medial temporal lobe and

medial frontal cortex) showed greater activatiomianipulation than in maintenance

11



conditions. In a separate control GLM analysis ewaluated whether any regions
showed differences in activity between the two rpalaition conditions. No voxels were
significant in this analysis, suggesting that ollexetivity levels were well matched
between the manipulation tasks. We did not seeatate effect in occipital cortex.

This is expected, given that visual stimuli wereaed across the four conditions.
However, because we hypothesized that visual cpitgss a role in mediating operations
on visual imagery, we included an anatomically-aedi occipital mask in our set of
ROIs. This gave us 12 ROIs to investigate for infational content relevant to the

mental operations.

Mocc .CERE lrrc lircu [liPitc [THAL [vTL [llFeF [oLprc - seF [TIFO [TIMFC

Figure2.2. ROIs

11 ROIs showing differential activity levels betwemanipulation and maintenance conditions. An
additional occipital cortex ROI was defined anatoaily. Abbreviations. OCC: occipital cortex; CERE:
cerebellum; PPC: posterior parietal cortex; PClécpneus; PITC: posterior inferior temporal cortex;
THAL: thalamus; MTL: medial temporal lobe; FEF: fital eye fields; DLPFC: dorsolateral prefrontal

cortex; SEF: supplementary eye field; FO: fronfa¢i@ulum; MFC: medial frontal cortex.

We then attempted to decode the particular mepidadions performed by
participants based on spatiotemporal patterns dilB€@sponses in each of these 12

ROIs. We carried out a multivariate pattern clasatfon analysis (53) within each ROI.
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In this analysis, a classifier algorithm is firstihed by providing it with a set of BOLD
response patterns from the ROI along with the memtaration associated with each
pattern. Then, a holdout pattern not involved mtifaining is used to test the classifier. If
the classifier can predict above chance the mepiation associated with the holdout
pattern, the ROI contains information specificltattparticular mental operation and is
likely involved in mediating that operation. We gad out two-way classifications in
each ROI between construct parts and deconstgurieficonditions and between
maintain parts and maintain figure conditions, webults shown in Figure 2.3A. In order
to evaluate the informational content of each RCd single analysis, we constructed the
model confusion matrix that would be expected é&gions that mediated the mental
operations (Figure 2.3B). A confusion matrix indesathe similarity between patterns
from different conditions—if patterns are more danithe classifier will be more likely

to confuse them. In this case, we expected highasity between patterns from the same
condition, moderate similarity when both patterresevfrom either manipulation or
maintenance conditions, and low similarity when pattern was from a manipulation
condition and the other was from a maintenanceitondWe then carried out
correlation analyses between this model and theahconfusion matrix in each ROI
derived from four-way classifications among theditans (Figure 2.3C). These
analyses identified a subset of the ROIs, congjsifroccipital cortex, posterior parietal
cortex (PPC), precuneus, posterior inferior temipooeex, dorsolateral prefrontal cortex
(DLPFC), and frontal eye fields, in which we codkecode the specific mental operations

from patterns of neural activity. Additional corltemalyses confirmed that our results

13



were not due to ROI size or differences in respdinses between conditions (see Figure

S2.1 & Table S2.1).
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Figure 2.3. Multivariate pattern classification results

A. Results for two-way classifications in each ROeEen manipulation conditions and between
maintenance conditions. Bar plot shows classificaticcuracies, in descending order. Error bars are
standard errors of the mean. Asterisks indicateracies significantly above chancegp.05, false
discovery rate [FDR] corrected across the 24 comspas). Table S2.2 shows full statistical resuts.
Model similarity structure for regions that medi#tte mental operations. Manipulation and mainteaanc
conditions should be more similar within than asrosndition typesC. Confusion matrices from fouxay
classifications in each ROI. Values are percentafjgterisks indicate regions in which confusion ricats
correlated significantly with the model £0.05, FDR corrected across the 12 comparisonsyauigecROl
were selected based on differences in activity betwmanipulation and maintenance conditions, wse onl
considered values within manipulation and maintesatonditions in the correlation (within the green

squares in part B). Table S2.3 shows full staastiesults.

Each of the four operations followed a three staggporal sequence, in which
participants encoded an input into a mental reptesen, performed a mental operation

on that representation (construct, deconstruafjantain), and produced an output

14



mental representation. Each of these stages ehtil@ique relationship among the
mental states associated with the four conditiéigufe 2.4A). For example, the inputs
to the construct parts condition were similar tost of the maintain parts condition, the
operation performed during the construct parts tamdwas similar to that of the
deconstruct figure condition, and the outputs ftbenconstruct parts condition were
similar to those of the maintain figure conditidius, the relationship among the
conditions evolved throughout the trial and prodidemeans of further exploring the
informational content of the mental workspace. ddhis, we carried out a four-way
classification among the conditions at each timetend correlated the resulting
confusion matrices with each of the three modellanity structures in Figure 2.4. High
correlation between a confusion matrix and onénefrhodel structures would indicate
that a particular region was carrying out the cgpoading stage of processing at that
time. Figure 2.4B shows the time course of cori@tat with each model in occipital
cortex. In Figure 2.4C, we report peak correlatiores in each of the 12 ROls. In the
four regions with highest classification accuragreBigure 2.3A, correlation peaks
progressed from input through operation to outprdyiding strong evidence that these
four areas directly mediated the mental operataathey unfolded over time. It should
be noted that the differences between test stiooulid have affected the output (orange)
correlation time course since the output mentalesgntations were similar to the stimuli
presented during the test phase. Our experimeesajal did not allow us to evaluate the
relative contributions of the output mental repreagons and of the test stimuli to the

output correlation time course.
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Figure 2.4. Temporal progression of neural informational structure during mental operations

A. Model similarity structures between the four caiotis based on the input mental representation, the
mental operation performed, and the output meerfalesentation. For example, constructing and
maintaining parts have similar input representatiohile constructing parts and maintaining figunase
similar output representations. Red outline indisatalues used in the following correlation timerses.
B. Time course of correlations in occipital cortexviieen model similarity structures and confusion
matrices from individual time point classificatio&ror bars are standard errors of the mean. Satieat
bottom shows the trial stages.Peak correlation times for the 12 ROIs. In ther fle@Is with highest
classification accuracies in Figure 2.3, the péaltke correlation time courses followed a sigrifit
sequence from input mental representation, thrayghation, to output representation (significanifRO

indicated with asterisks). Table S2.4 shows futistical results.

The above analyses show that a subset of ROIs @sphe temporal evolution of
information necessary to carry out particular meoperations. However, they do not
provide evidence about how these regions communigahin the mental workspace
network. We investigated this by analyzing pattehfinctional connectivity between
the ROIs. For each condition, participant, andaegve constructed a time course by

concatenating the mean BOLD signal within that@agicross the participant’s correct-
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response trials for that condition. We calculatezlfunctional connectivity, defined as
the correlation between pairs of time courseseémh condition, participant, and pair of
regions (58). This yielded one network-wide pattefrfunctional connectivity for each
condition and participant. A cross-subject clasatiibn analysis on these connectivity
patterns successfully predicted whether particpamgntally manipulated or maintained
imagery with 61.7% accuracy(14) = 2.4,p = 0.029]. This indicates that patterns of
connectivity between the network components chaagpending on the operation that
participants performed on the contents of their taldmagery. Investigating the weights
that the classifier assigned to each pair of regadlowed us to determine which
connections were most informative ( Figure 2.5A)n@ectivity increases between pairs
with positive weights drove the classifier towané manipulation conditions, while
increases between pairs with negative weights ditdeevard the maintenance
conditions. Thus, stronger connectivities with pinecuneus and with left posterior
inferior temporal cortex indicated manipulation ddgions, and stronger connectivities
primarily with the medial temporal lobe indicatedimtenance conditions. In Figure
2.5B, we plot the difference in functional conneityi between conditions. The
precuneus and posterior inferior temporal cortewnsdt stronger connectivity with
several frontal and parietal regions during marapah conditions while connectivity
between the medial temporal lobe and many regienarne weaker. Thus, our data show
not only that a distributed set of regions mediatestal operations, but also that these
regions communicate in an information processirtzvak. The network switches
between two connectivity profiles depending on Wwketmental representations are

maintained or manipulated.
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Figure 2.5. Multivariate pattern analysis of functional connectivities

A. Sensitivities for each pair of ROIs in a betweahjsct classificatiof functional connectivity betwee
manipulation and maintenance conditions. Red deitigis are positive, driving the classifier toward
choosing “manipulate.” Blue sensitivities are néggtdriving it toward “maintain.” Only significamon-
zero sensitivities are showp £ 0.05, corrected for similarity between folds (7®hturated colors indice
sensitivities that survived FDR correction acrdms231 comparisonB. Difference in functional
connectivity between manipulation and maintenamglitions. Positive and negative differences are
separated into the upper and lower diagonals, ctisply. Only significant connectivity differencese

shown ¢ < 0.05), and differences surviving FDR correction sitewn saturated.

Discussion

Our findings reveal a widespread cortical and sl network that operates on
visual representations in the mental workspaces maitwork includes four core regions
spanning DLPFC, PPC, posterior precuneus, and itelogprtex that manipulate the
contents of visual imagery. Within these regionsdeeoded and tracked the evolution of
mental operations over time. Several other areawesth a difference in BOLD responses
between the manipulation and maintenance condibahsvithout the specificity found
in the four core areas. An extended network ofaegjis therefore likely involved in the

operations. Changes in patterns of connectivitwbeh the mental workspace network’s
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nodes reveal that the network supports at leastistonct modes of operation,
depending on whether mental representations anetana@d or manipulated. We discuss

each of the identified components of the netwolkwe

Frontoparietal cortex. Our finding that DLPFC and PPC directly mediate
manipulation of visual imagery is supported by npldt studies suggesting that a network
of frontal and parietal areas is involved in marghHevel cognitive abilities in humans
(33-36). Miller and colleagues showed that theaasps of neurons in DLPFC convey
more information about the task-relevance of stirtidn about their specific features
and that this selectivity for task-relevance ismeined over extended durations in the
absence of stimulus input (71). Thus, the DLPFGeappto be part of a network that
maintains representations in working memory viargtbn. Human neuroimaging studies
have shown that DLPFC and PPC are both activagatdkess of the type of information
that is held in working memory (72, 73). Selectividr task rather than representation
distinguishes this system from subsidiary systdrasdre capable only of maintaining
particular classes of information (74). These fingdi support the view that the
frontoparietal network is an executive system thatuits subsidiary systems, as
proposed in Baddeley’s (75) model of working memdfpdeling work by O’Reilly and
colleagues (68, 69) has shown how prefrontal cartay be able to flexibly self-organize
abstract rules and later apply them to specificaggntations. This ability is common to
many flexible cognitive processes in humans suadmatogical reasoning, creativity
(34), and fluid intelligence (36). Our data provitapirical support for this model by
showing that the DLPFC and PPC mediate not justthi@tenance of representations in

working memory, but also the manipulation of thoesgresentations. Thus, these areas
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may form the core of a system that mediates cons@gperations on mental
representations, in this case the contents of Miswagery represented at least partially in

occipital cortex.

Occipital cortex. Several studies have found that the occipitalesoprocesses
information relevant to internally-generated visegberience. Harrison and Tong (42)
used patterns of activity in early visual cortexderode the orientation of gratings that
participants maintained in working memory. Recertlgrikawa and colleagues (67)
decoded the contents of participants’ visual exqpexe while dreaming from patterns in
visual cortex. Thus, the visual cortex likely regerts the contents of both internally- and
perceptually-generated visual experience. Our tesxtend these findings to show that
mental representations are not only formed but @tgrated on in visual cortex. This
may generalize to other sensory domains, suctthibdirain mediates perceptual

processes and operates on the corresponding meptasentations in the same regions.

Precuneus. Margulies and colleagues reported that the pra@iimtehumans is
functionally connected to lateral frontal, posteparietal, and occipital cortices (76).
The precuneus is one of the most connected regiotih cortex, suggesting that it may
serve as a hub in several cortical networks. lir legiew, Cavanna and Trimble (77)
cite a body of evidence that the precuneus is wagIn visuospatial imagery, is
relatively larger in humans than in non-human pteeand other animals, and is one of
the last regions to myelinate during developmenngistent with these findings, Vogt
and Laureys (78) propose that the precuneus plagstaal role in conscious information
processing. Extending this work, our data show tiafposterior precuneus becomes

more functionally connected to DLPFC, PPC, andmtadicortex when participants
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manipulate mental visual representations and stigiggsit acts as a hub in the mental

workspace network.

Extended network. Our findings reveal that the DLPFC, PPC, posterior
precuneus, and occipital cortex are central tarikatal workspace. However, several
other regions activated during the experimentdstaSurrent understanding of these
areas’ functions suggests possible roles they qalalglin mental operations. The
cerebellum, long thought to be exclusively involweanotor coordination, is now known
to connect strongly to prefrontal and posterioigial cortices and to mediate attentional
processes (79). Posterior regions of the inferotealwortex are involved in visual
object processing (80). The thalamus is a hubrii@raction between cortical areas and
may play a critical role in consciousness (47). itealial temporal lobe (MTL) is a hub
in memory formation and retrieval (81). This is paged by our finding of stronger
functional connectivity between the MTL and oth&IR during maintenance conditions.
The frontal and supplementary eye fields play a molcontrolling visual attention (82).
Recently, Higo and colleagues (83) showed thafrtraal operculum controls attention
toward occipito-temporal representations of stinmelid in memory. And the medial
frontal cortex is a hub in the default mode netwibwkt plays a role in self-directed
attentional processes (84). Thus, all of theseoreggare likely involved in the mental

operations performed by participants.

A significant new finding of the present studyhsitt connectivity in the mental
workspace network switches between orthogonal mofieperation depending on
whether the network maintains or manipulates regragions. Although several network

components represent information during both taslsdata show that patterns of
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network connectivity associated with these taskemdsubstantially. Maintenance of
representations involves dense, bilateral intereotions across the entire network with
the MTL acting as a hub, while manipulation of thospresentations recruits a sparse,
slightly left-lateralized network with a hub in tpesterior precuneus. Whereas the MTL
hub does not contain specific information aboutesiimental representations or
manipulations, the posterior precuneus hub contafosmation specific to each
operation. This suggests that these hubs servadliinctions across the tasks. The
MTL appears to bind network components togetherleanthe posterior precuneus may
exchange information within a sparse core of tletswork that itself supports

manipulation of representations.

Previous studies have not been able to find evielémat the areas we identified
play specific roles in manipulating representatidrt®ey have shown differences in
BOLD or connectivity or have been able to clasb#yween maintenance and
manipulation in certain areas (85—87) but haveshotvn that these areas are responsible
for the manipulations themselves. An alternativel@xation of these findings could
merely be that attentional allocation is increadedng manipulation over maintenance
tasks. A major advance of the current study igrtkestigation of neural activity in two
gualitatively distinct types of manipulations. Weog/ed that a subset of areas in the
mental workspace network contains information dpeto particular manipulations. We
additionally showed that the task-related inforimaail structure of these areas evolves
over time in accordance with the manipulationsqrened. This provides novel and
specific evidence for the particular network comgrais that directly mediate mental

operations.
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Human cognition is distinguished by the flexibiligth which mental
representations can be constructed and manipulaigeherate novel ideas and actions.
Dehaene (65) and others have proposed that thisyabia key role of a global neuronal
workspace that in part realizes our conscious éspee. Here we have shown that
patterns of activity in just such a distributed rgal network mediate the flexible
recombination of mental images. While the presardyswas limited to visual imagery,
we anticipate that this network is part of a mogaeyal workspace in the human brain in
which core conscious processes in frontal and taduaeeas recruit specialized
subdomains for specific mental operations. Undadstey the neural basis of this
workspace could reveal common processes centthéttbexible cognitive abilities that

characterize our species.

Materials and M ethods

Participants. 16 participants (6 females, aged 19-30 years) gdoemed written
consent according to the Institutional Review Boguitielines of Dartmouth College
prior to participating. Data from one participartiavcould not achieve our task accuracy
criterion were discarded before further analysastiBipation consisted of two sessions:
an initial behavioral session during which partaifs practiced the tasks and an fMRI

session.

Stimulus. 100 abstract parts served as the stimulus setr@®1C). The first
eight parts were manually defined. Each subseqethtvas generated by randomly
perturbing a quarter circle while fixing the endpsi For each part, 1000 shapes were

randomly generated and the shape with lowest @tioel to the previous shapes was
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chosen. The complexity of parts scaled with the loemof control points used to
generate them. Any four parts could be assembtedai2 x 2 figure (Figure 2.1A). A
difficulty index d that scaled from 0 to 1 was used to specify tihsetuof parts to use,

enabling us to control the difficulty of each tasependently for each participant.

Task. Participants performed four mental operations whhstimuli: They
mentally constructed four parts into a figure, destoucted a figure into four parts,
maintained four parts, or maintained a figure. Partre always displayed in a horizontal
row, rotated into the correct orientation such tifatonstructed into a figure, they would
be ordered clockwise starting with the upper righdrant. During each 12s trial,
participants performed one operation. At the sitheach trial, a figure and four unrelated
parts were displayed, one above and the other bietation (counterbalanced across
trials). Both a figure and parts were displayeddaate for low-level image properties
and attention across tasks. After 2s, the stimdilsesppeared and was replaced for 1s by a
task prompt consisting of either an upward or doawdrfacing arrow and the letter “C”,
“D”, or “R”. The arrow indicated which of eitheréHigure or parts would be used in the
task, and the letter indicated the operation tégper on the stimulus (C: construct; D:
deconstruct; R: remember). The participant then3satb perform the operation, during
which only a fixation dot appeared. Finally, a testeen appeared in which either four
figures or four sets of parts (depending on thk)tagre shown for 2.5s. One of these
stimuli was the output of the instructed operatamg the other three were distractors that
were identical to the target except for a single.phe participant was instructed to
indicate the target within 4s of the test screapgearance. During the behavioral session

participants completed 50 trials of each operatype, with stimulus complexity set
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using a staircase procedure. From these data weat¢stl thed value for each operation

at which each participant chose the correct targ2t3 of trials.

MRI acquisition. Data were collected using a 3.0 T Philips Achiltara
scanner with a 32-channel sense head colil at thenbath Brain Imaging Center.
Whole-brain functional images were acquired usifi@&aweighted gradient-EPI scan
(2000ms TR, 20ms TE; 90° flip angle, 240 x 240mm/E@ x 3 x 3.5mm voxels; Omm
slice gap; 35 slices). Structural images were aeduising a T1-weighted magnetization-
prepared rapid acquisition gradient echo sequehdé@@ms TR; 3.72ms TE; 8° flip
angle; 240 x 220mm FOV; 188 sagittal slices; 0.98T69375 x 1mm voxels; 3.12min
duration). Participants completed 10 functionalstuBach run consisted of 16 trials
interleaved with 10s blanks, giving 40 trials fach condition. Thd value was updated

on each trial so that participants achieved 2/3i@xy for each trial type.

MRI preprocessing. fMRI data were preprocessed using FSL (88). Dagew
motion and slice-time corrected, high-pass filtengith a 100s cutoff, and spatially
smoothed with a 6mm FWHM Gaussian kernel. Struttarages were processed using

the FreeSurfer image analysis suite (89).

ROI selection procedure. A whole brain GLM analysis was carried out on
functional data using FSL’s FEAT tool. A first-le\analysis for each participant used
boxcar predictors for each of the four conditiasmvolved with a double-gamma
hemodynamic response function (HRF). Only trialsvibich participants made correct
responses were included (~27 per condition). Thateesf this analysis were passed to
higher-level cross-subject analyses, carried oMM space, in whicl-contrasts were

defined for manipulate > maintain and for manipeiketmaintain. Eackicontrast map
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was cluster thresholded a¢ 2.3; clusters were then thresholdeg &t0.05 according to
Gaussian Random Field theory (88). This analysiklgd 11 bilateral ROIs that were
then transformed back into each participant’s masipace for further analysis. An
additional occipital ROI was defined anatomicaftyeiach participant’s native space
using the following cortical masks from FreeSurfeferior occipital gyrus and sulcus,
middle occipital gyrus and sulci, superior occibggrus, cuneus, occipital pole, superior

occipital and transverse occipital sulci, and aatesccipital sulcus.

Multivariate pattern analysis (MVPA): Classification. MVPA was carried out
using PyMVPA (90). Spatiotemporal patterns werestaeted for each correct-response
trial and ROI using the z-scored BOLD response fiidRs 4-6 of each trial (the period
during which the operation was performed, afteftisig by a 4s estimate of the HRF
delay). Classification was carried out in each REwveen construct parts and
deconstruct figure trials and between maintaingpanid maintain figure trials, using
these patterns, a linear support vector machindA)Sdassifier, and leave-one-out cross
validation. Significance of accuracies was evaldaigng one-tailed, one-sample t-tests
compared to chance (50%) and false discovery Fd®] corrected across the 24
comparisons (one for each ROI and classificati@rfpur-way classification was also
carried out in each ROI to produce the confusiotrioes in Figure 2.3C. Correlation
analyses were carried out between each of thedaston matrices and the model
similarity structure in Figure 2.3B. Significancasvdetermined gt< 0.05, FDR

corrected across the 12 comparisons (one for e@dh R

MVPA: Correlation time courses. Four-way classifications were carried out at

each time point of the trial, here using spatidatgras of BOLD signal across all voxels
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within each ROI. This produced a confusion mataxdach time point, and these were
correlated with each of the model similarity stures in Figure 2.4A. The first structure
models similarities between the conditions basedloether the input representation is a
set of parts or a figure. The second structure saimilarities based on the two types of
operations carried out (manipulation or maintengaritlee third structure models
similarities based on the outputs from each comalitFor each ROI and model structure,
we calculated the time point at which the meaneatation reached a maximum, yielding
the table in Figure 2.4C. These calculations westricted to TRs 3-8, representing the
pre-test portion of the trial, HRF shifted by 4er Each ROI we carried out a one-way
repeated measures ANOVA on the peak correlatioaedita test whether the expected
progression from input through operation to outmedurred. We performed the analysis
on trimmed, jackknifed data, as recommended byavjiPatterson, and Ulrich for
latency analyses (70). In a jackknifed analysifiwtsubjects, N grand means of the data
are calculated, each with one subject left out. diadysis is then performed on these
grand means with corrections applied for the jadikkinduced decrease in variance. In
the case of noisy estimates such as occurs wheulathg latencies from single-subject
time courses, this procedure provides cleanertsesdiile not biasing estimates of
significance. For each ANOVA we defined two orthogblinear contrasts (C1 = -1/-1/2
[input/operation/output]; C2 = -1/1/0) to evalu#te temporal order of the peaks. We
determined that an ROI significantly followed theected progression if and only if

both of these contrasts were significanp &t0.05 uncorrected.

Functional connectivity. The functional connectivity (58), defined as thsheér’s

z-transformed correlation between time courses,cabfilated for each participant and
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condition across all pairings of the 24 unilaté@lls and using data pooled across all
correct trials. This yielded a single connectipgttern for each participant and
condition. Unilateral ROIs were used to maximize plotential information in each
pattern. We then carried out a cross-subject ¢ieason between manipulation and
maintenance conditions, using these connectivitiepas and an SVM classifier. The
sensitivities shown in Figure 5A are significandijfferent from zero in a one-sampte
test, corrected for the artificially low varianceedto similarity between folds (70) and
thresholded gb < 0.05. Saturated colors indicate sensitivities shavived FDR
correction across the 231 comparisons (one for eachectivity). Differences are
thresholded gb < 0.05 in a one-samptetest. Saturated colors again show differences

that survived FDR correction.
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Ch. 3: Information processing in the mental workspace isfundamentally

distributed?

Abstract. The brain is a complex, interconnected informapoocessing network. In
humans, this network supports a mental workspaateetiables high-level abilities such
as scientific and artistic creativity. Do the compaot processes underlying these abilities
occur in discrete anatomical modules or are thefyiduted widely throughout the brain?
How might the flow of information within such a me&irk support specific cognitive
functions? Current approaches have limited abititgnswer such questions. Here we
report novel multivariate methods to analyze infation flow within the mental
workspace during visual imagery manipulation. Wil fihat mental imagery entails
distributed information flow and shared represeotet throughout the cortex. These
findings challenge existing, anatomically modulardels of the neural basis of higher-
order mental functions, suggesting instead that puacesses may occur at a
fundamentally distributed level of organization.eTiovel methods we report may be

useful in studying other similarly complex, highw informational processes.

2 This chapter is currently under review for pubtica (108).
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Introduction

A hallmark of human cognition is the ability to wanally construct and flexibly
manipulate mental representations. Such abilitee® been studied using several
overlapping psychological constructs including wogkmemory (7), mental imagery (8,
91), visuospatial ability (9), mental models (1&)alogical reasoning (11), and the
mental workspace (1). In general, these terms @dhetability to work flexibly with
mental representations, a skill that underlies mafdiuman life from mundane tasks
such as planning seating arrangements at famityogethers to our species’ greatest
artistic and scientific achievements. For instaidbert Einstein wrote that his scientific
thought process consisted primarily of “certaimsignd more or less clear images which
can be 'voluntarily' reproduced and combined” (Hdre we will use Logie’s term
“mental workspace” to refer to the mental spaceich these flexible cognitive
processes occur.

How does the human brain support the mental wodespaderlying flexible and
creative mental phenomena such as mathematicahtsid, and artistic thought (1)?
Understanding how the brain enables the imaginaiiiies of the mental workspace is
an important goal for many fields (92, 93), andesaly/models have proposed potential
mechanisms (1, 7, 38, 47, 48, 94). Previous rekdas shown that manipulating visual
imagery in the mental workspace recruits a newrbdlark extending throughout the
cerebral cortex and associated structures (95)mfsortant question to answer of such a
network is whether the component processes undgrtiie network’s function occur in
anatomical modules or via a fundamentally disteduevel of organization that

transcends anatomical boundaries. However, outyatnlmeasure and analyze complex
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informational processes that are distributed widlelthe human brain remains
underdeveloped, and thus such questions are clyrdifficult to answer (39, 60, 61).
Manipulation of visual imagery requires multiplenggonent processes including
a) forming a mental representation of an imagek@rmkrforming an operation to
manipulate that representation. Several curreswdstrd models propose that the
different functional units of this network corresylbto anatomically distinct neural
structures. For instance, the ‘central executineBaddeley’s model of working memory
has been proposed to reside in dorsal lateralgredt cortex (DLPFC) and direct the
formation of mental representations in modalitycsfperegions such as visual cortex for
the ‘visuospatial sketchpad’ or auditory cortexttoe ‘phonological loop’ (7, 39-41, 44).
Likewise, Postle argues that prefrontal cortexasinvolved in the representation of
working memory contents; instead, his model sttitasmental representations are
processed exclusively by domain-specific sensargction-related regions (38). Thus,
while these models hold that working memory andteal abilities may recruit a
“distributed” neural network in the sense that¢benplex functions of the network are
mediated collectively by anatomically widespreagioas, the component processes that
constitute those complex functions are relegatexhedomically distinct modules. In
many cases, empirical support for the anatomicalutawity of these models derives
from a failure to find (i.e. acceptance of nulluks) or often even look for relevant
information in regions outside of those that thedels propose (7, 38, 40, 44, 45). For
instance, both Ishai and colleagues (44) and Ldecalleagues (40) found information
pertaining to the visual but not the non-visualezsp of working memory representations

in extrastriate visual cortex and found the oppoft lateral prefrontal cortex. Both
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groups interpreted this to mean that extrastrieeal cortex processes visual aspects of
working memory tasks but not non-visual aspectd,\ace versa for lateral prefrontal
cortex. While such conclusions are a common praati¢he field, they amount to
acceptance of null results regarding the infornmatiwat was not detected in each
respective area and are thus in danger of faibregctount for information that may have
been present but that was not detected by thelodst Baddeley’'s anatomically
localized model of working memory similarly relies studies that either did not find or
did not look for relevant information outside ofdothesized regions (7).

However, mounting empirical evidence derived fromavnnetwork- and
information-based analytical techniques paints ancomplex picture, suggesting that
many high-level cognitive processes occur at al leverganization that transcends any
single neural structure (46-51, 96). We therefgq@othesized that the mental workspace
emerges out of a fundamentally distributed shasingformational processes throughout
the cortex. This hypothesis runs contrary to mada¢gounts that claim information is
segregated to specific anatomical regions, sucisaal information occurring only in
visual cortex or executive processing occurring/amlprefrontal cortex (7, 38, 40, 44).
However, we predicted that this emergent orgaronatiould only become apparent if
studied using analytical methods that are senditivieformational connections between

widely distributed network nodes.
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Figure 3.1. Experimental design

A. The four shapes used in the experiment, relatedwo-level hierarchical structure. Two shapesawer
derived from a 4 x 4 rectangular grid, and two sisapere derived from an analogous polar grid. At
bottom is a similarity structure that representsriatrix form of the hierarchy. Each shape is nsomrelar
to itself than it is to any other shape, and eactangular shape is more similar to the other ngtiar
shape than it is to either polar shape (and vieceajeSee ref. (95) for details on the particuluges used
in the similarity structureB. The four mental operations used in the experinadsat, related in a two-level
hierarchy: 90° clockwise rotation, 90° counterchide rotation, horizontal flip, and vertical fliphe

similarity structure for operations is constructedhe same manner as for shapes.

To evaluate our hypothesis and investigate howrtletal workspace network
functions in both the representation and manipaedif visual imagery, we used
functional magnetic resonance imaging (fMRI) toomelccortical activity as participants
performed a series of trials involving the mentalnipulation of shapes maintained in
working memory. During each trial, participantsaied one of four abstract shapes
memorized previously (Figure 3.1A) and performed ohfour mental operations on that
shape (clockwise 90° rotation, counter-clockwisé f@f@ation, horizontal flip, or vertical

flip; Figure 3.1B). To support the functional arsdg described below, the shapes were
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related in a two-level hierarchy of similarity (Ségure 3.1A). The operations shared an
analogous relationship (see Figure 3.1B). In otd@msure that neural activity associated
with the shapes and operations was due to visuajeny rather than the presented visual
stimuli, we constructed a unique mapping for eamtiiggpant from shapes to letters and
from operations to numbers. Each trial occurretbbews: At the start of a trial, four
letter/number pairs (e.g. “C3”) appeared for 2ghvain arrow pointing to a single pair to
indicate the shape and operation for the currét The other three pairs were shown as
a visual control to ensure that any successfukiflaation analyses were due to mental
imagery rather than the visual stimuli. After ap@siod during which the participant
performed the indicated mental operation, four skagi various orientations appeared on
the screen for 2s. One of these was the shapetedipreviously, while the other three
shapes again served as a visual control. The pamicindicated whether the displayed
shape was at the orientation that would result fieenindicated operation and was then
given feedback regarding whether their choice veaisect or incorrect (see Figure S3.1
for a trial schematic).

Our analyses of the task-related fMRI data useahabination of existing and
novel multivariate methods to investigate the infational structure of the network
underlying the mental workspace. First, we perf@R©I classification analyses with
trials labeled based on either shape or operatiotketermine the regions in which
cortical activity supported information about memépresentations and/or mental
manipulations. Second, we developed a novel RGiseatassification analysis to
determine whether this information was shared betwegions. Third, we developed a

novel classification analysis on patterns of infation flow between cortical regions to
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determine how information related to the task wasdferred between regions. Detailed
descriptions of our analytical methods are presemélaterials and Methods and in

Figure S3.2 and Figure S3.3, and summaries ar@ gow.

Figure 3.2. ROI classification results

A. The six bilateral ROls used in the A

current experiment, derived from the
results of a previous study (see Materials
and Methods). OCC: occipital cortex;
PPC: posterior parietal cortex; PCU:
precuneus; LOC: lateral occipital cortex;
FEF: frontal eye fields; DLPFC: 8 r T ’D \' ¢ c o had t
dorsolateral prefrontal corteB. Mean

confusion matrix from a four-way

classification among mental

representations across the entire mental

workspace network (compare to Figure p a5
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corrected for multiple comparisons across the s®@trs.
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Results

Performance accuracy was high after an initiahtrgj session during which
participants memorized the shapes, operationscamdsponding letter and number
mappings (responses were correct in 95.8% of tai@asss participants and conditions).
One-way between-subjects analyses of variance showsignificant differences in
accuracy across conditions, confirming that théalifties of shapes and operations were
well matched [for shapeBi(3,72) = 1.65p = 0.185; for operation$:(3,72) = 0.369p =
0.775; see Table S2.1 for behavioral results].

ROI Classification Analysis. Our regions of interest (ROIs) for analysis of the
fMRI data were the six bilateral cortical regiohsttcontained information pertaining to
the transformation of visual imagery in a previgtusdy that used data independent from
those of the current study (Figure 3.2A; see Maternd Methods for details on how
these ROIs were defined) (95). Each area has le®msto play a role in neural
processing related to the current task (33, 3978280, 82). We used multivariate
decoding methods to determine whether each ROIostgzpinformation about mental
representations and/or mental manipulations ofatisnagery, i.e. whether patterns of
neural activity in each ROI could be used to clggssither the shape that was represented
in visual imagery during each trial or the openatibat was used to manipulate that
representation.

Because of the hierarchical relationship that vilduced among shapes and
operations, we measured classifier performanceyusirepresentational similarity
analysis in which we correlated the confusion magsulting from each four-way

classification with the matrix form of this hier&ical similarity structure (Figure 3.1A &

36



B) (56, 95). This measure allowed us to use infeionadrom both correct classifications
(classification ‘hits’) and specific patterns ofndosion (classification ‘misses’) between
conditions that resulted from the relationships agishapes and among operations.
Thus, classification was only “successful” if tHassifier performed according to our
hypothesized pattern of correct-classification endfusion, allowing us to verify that
our results were not due to task-irrelevant facsmich as the letters or numbers used in
the task mapping.

Initial classifications using the union of all RQsnfirmed that the information
processing structure of this network matched pedgithe similarity structures of both
shape and operation sets [Figure 3.2B & 2C; fopehat(18) = 106., p = 8.59 x 10-26;
for operations: t(18) = 16.0, p = 4.54 x 10-12uitsare false discovery rate (FDR)
corrected for multiple comparisons]. This resusioatheld true for classification analyses
performed on each ROI separately (Figure 3.2D; [EDRected for multiple comparisons
across the seven total analyses for each claggficecheme). Because all of our results
were significant, we verified the specificity ofroanalysis by conducting control
classifications using two additional masks. Thstfwas a functionally-defined, bilateral
thalamus ROI from our previous study that showedeased but not task specific
activity during mental manipulation of imagery caangd to maintenance of imagery; the
second was an anatomically-defined ventricle miske of the four control
classification analyses using these masks reagyefficance, confirming that our
original analyses detected information about treg@ek and operations specifically within
our six ROIs (see Table S3.2 for ROI control analyssults). As a further control to

confirm that our analysis was valid and unbiasesl shwffled the labels randomly in each
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classification and found that the correlations lestw confusion matrices and model
similarity structures were no longer significanable S3.3). Thus, neural activity in each
ROI supported information about both representadiosh manipulation of visual
imagery. This result provides evidence that praogssf both representations and
manipulations is distributed throughout the mentatkspace network, running counter
to models such as Baddeley’s or Postle’s that meploat its component processes are
segregated to particular cortical regions (7, 88,44, 45). The large effect sizes and
specificity of our results underscore the sensitiof our experimental design and RSA-
based analysis for uncovering information that oteehniques such as univariate
analyses or two-way classifications may have missed

ROI Cross-classification Analysis. Information about both representations and
manipulations thus appears to be distributed tHrougthe mental workspace network,
but what format does this information take? Ourdtfipsis states that information is
shared commonly throughout the network. Howeveeyahtive proposals state that each
network node specializes in a unique informati@sgect of representation and
manipulation. For instance, Lee and colleagues g4gyest that whereas visual cortex
represents image-level information, informatiormprefrontal cortex is conceptual in
nature. To evaluate these alternatives, we develap®vel multivariate cross-
classification analysis to investigate whether iinfation is shared among the nodes of
the mental workspace network. In this analysistiramed a classifier on data from one
ROI and tested it on data from another ROI. A sssftg classification using this
procedure would provide strong evidence for a shar®rmational format between

regions, rather than the alternative possibiligt thoth ROIs support information about
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the task but in independent formats. However, R@¢sincompatible as voxel-based
features spaces, presenting a technical hurdless-classifying because cross-
classification requires patterns to share the daatere space. In other words, cross-
classification would require the feature spaceaaheR Ol to have identical
dimensionality and each feature of one ROI to creysame meaning as the
corresponding feature in the other ROI. Thus, st fieeded to transform each ROI's
data into a common feature space before we coufdrpethe cross-classification
analysis.

Conceptually, we hypothesized that the functiormahdor a given ROl were a set
of signals in voxel-space that represented a mexdfia number of underlying
informational subprocesses that were shared istatlited manner between the ROIs. If
this characterization is valid, then principal cament analysis (PCA) would allow us to
transform our voxel-based data independently fohd20l in order to recover a set of
principal component signals that represented tlienying subprocesses that were
mixed between the voxel-space signals that we bigtmaasured. We therefore used
PCA to convert the voxel-based data from each R@I5%0 principal component signals.
We chose the number 50 in order to construct ¢leason patterns of sufficient size
while remaining smaller than the size of our snslROIls (e.qg. the lateral occipital
ROI); however, we did not test whether this wasdpgmum dimensionality to use. This
step allowed us to establish feature spaces fdrR@is that had uniform dimensionality.
The second step required to construct a commounrgeapace for cross-classification
was to rearrange the dimensions of these feat@®espsuch that corresponding features

carried the same informational meaning across RIdlschieve this for each cross-
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classification between two ROIs, we performed awiae matching of component
signals between the two ROIs in order to maximieetotal correlation between matched
component signal pairs (i.e. so that each compasignal from the first ROl was
matched to a maximally similar signal from the set&0OI). We performed this

matching step independently for each fold of thasstclassification, leaving out data

from the testing set in order to avoid artificiaihflating the similarity of test patterns

across the two ROls.
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Figure 3.3. ROI cross-classification results

Arcs indicate pairs of ROIs in which cross-classifion was successfubotted arcs indicate classificatic
that were significant but did not pass FDR cormtticross the 15 ROI pairs. All other displayed
classifications passed FDR correction. Arc thiclkrnieglicates t-statistic values in a one-tailedkkaded t-

test of Fisher’s Z-transformed correlations betweanfusion matrices and model similarity structures

compared to zero (see text). Abbreviations are &gure 3.2.

This two-step process yielded a common 50-dimeasi@ature space for each

fold of each cross-classification analysis (seaiféd3.2 for a visual schematic of the
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procedure). Classification then proceeded exastiy @ghe previous ROI-classification
analysis. We cross-classified between each pd&Qif, with results presented in Figure
3.3 (all results FDR corrected across the 15 R@spaNe could successfully cross-
classify mental representations between most paiROIs, providing evidence that
information about mental representations held suai imagery is shared widely in a
common format throughout the mental workspace ndtwiche cross-classification of
mental manipulation was significant only betweerPBIC and PPCG(18) = 1.93p =
0.0346 (uncorrected)]. However, this result did Imoid after FDR correction. This result
suggests that information about manipulations sfi@ imagery is distributed but may be
more compartmentalized in the network, with DLPF@ PC possibly sharing some
information. As in the ROI classification above, eanfirmed the validity of the analysis
by performing control analyses in which labels wanaffled randomly. In this case, the
cross-classifications were no longer significaaling out the possibility that our cross-
classification results occurred due to unknowndsaatroduced by our analysis pipeline
(Table S3.4). Thus, information about mental repné&stions is not only distributed
throughout the network, but is also shared in amomformat between many network
nodes, while information about mental manipulatioresy be more compartmentalized
but shared between some nodes.

Information Flow Classification Analysis. In order to investigate how this
information becomes shared, we developed a newadethanalyze whether information
pertaining to visual imagery representations andipudations was carried in condition-
specific patterns of directed connectivity betweairs of network nodes. In other words,

this analysis abstracted away from information aor@d in patterns of activityithin
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neural regions, seeking instead to probe the indtional content of patterns of
information flowbetween neural regions. Established methods for asses#iagted
connectivity are concerned primarily with determmwhether processing in one region
is predictive of later processing in another redi®d, 61, 97). In this sense, these
methods are analogous to univariate analyses irthteg can detect increases or
decreases in directed connectivity, but are insgadio information that may be carried
via patterns of such connectivity. Because of lim#ation, two processes (e.g.
clockwise and counterclockwise mental rotation) reatail distinct patterns of directed
connectivity without involving differing overall ngaitudes of directed connectivity, and
would thus be indistinguishable by current methédsthermore, in the present analysis
we were not concerned directly witthether information flowed between nodes, since in
a densely connected, distributed network each moltiékely exert a complex pattern of
control over all other nodes. Rather, we wantekhtow whether the condition-specific
patterns of directed connectivity between the underlyiniprmational processes that
were distributed among these nodes supported iafttomabout specific mental
representations and manipulations. If so, therctineent analysis would provide further
evidence for the findings of the previous two asafythat the information processing
underlying the manipulation of mental imagery oscaira fundamentally distributed

level of organization in the cortex.
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Figure 3.4. Information flow classification results

A. Graph indicating directed ROI pairs A

in which patterns of information flow
could be used successfully to classify

mental representation. Dotted arrows

indicate classifications that were

significant but did not pass FDR

[l occ [lirrc W Pcu

correction across the 30 directed ROl [ltoc [lrer [ oprc

pairs. All other displayed classifications c

passed FDR correction. Arrow thickness

PCU

indicatest-statistic values in a one-tailed,

jackknifed -test of Fisher'&Z-

transformed correlations between

confusion matrices and model similarity
structures, compared to zero (see text).
Light red arrows indicate posterior to anterior mections and dark red arrows indicate anterior to
posterior connections. The greatest effect occuoethe OCC to LOC connection and the smallest
significant effect occurred for the LOC to DLPFoection. Both effect sizes for these two connastio
are indicated on the graph for reference. Abbr&uvigtare as in Table S3B. A topological sorting of

the graph from panel A reveals that the OCC residdise top of a bottom-up hierarchy of information
flow for mental visual representatior. Graph indicating directed ROI pairs in which patteof
information flow could be used successfully to sifsmental manipulation. Arrow properties are®s i
panel A.D. A topological sorting of the graph from panel @aals that the DLPFC and FEF reside at the

top of a top-down hierarchy of information flow forental manipulations of visual imagery.

As directed connectivity patterns we used Grangeisal graphs (GC-graph)

constructed independently for each unique taskitond61). Granger-causality is a
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statistical method for evaluating the ability od@urce signal to predict the future of a
destination signal beyond the predictive power es by the destination signal’s own
past. While the validity of Granger-causality fMRI data has come under scrutiny,
computational and empirical work has shown thet & viable technique when proper
precautions such as those used in the present atadgken (61, 98, 99). Specifically,
we investigated differences in patterns of Grarggersality between conditions rather
than attempting to establish “ground-truth” connett between regions. Our GC-graphs
were constructed as follows: First, voxel-based fi@m each ROI were transformed
individually using PCA into 10 principal componesgnals, with the same rationale as
described above for the cross-classification amalyge used 10 components here
instead of 50 so that our resulting GC-graphs wbalee a reasonable dimensionality for
classification, but we again did not evaluate tpgnoal dimensionality to use. Next, we
constructed a 10 x 10 GC-graph for each of therfigue task conditions (e.g. shape 1 +
clockwise rotation), each participant, and eacbaled pair of ROIs (e.g. from PPC to
DLPFC). Each GC-graph was constructed by computiagsranger-causality from each
of the 10 principal components in the source RQdaoh of the 10 principal components
in the destination ROI, using only data from theghe task condition. For each
participant, task condition, and directed pair @IRthis process yielded a pattern of
directed connectivity (the GC-graph) that represeérat task-specific, directed pattern of
information flow between regions. We then usedeéhl@€-graphs as inputs to
classification analyses as described above, wihlt®presented in Figure 3.4 (Figure
S3.3 provides a visual schematic of this analy§lemplementing our ROI classification

and ROI cross-classification results, we found trequently bidirectional patterns of
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directed information flow between many nodes ofrtiental workspace network could
be used to classify shape representations. A tgmabsorting of the resulting directed
graph of significant classification results reveladeposterior to anterior hierarchy for
mental representations, with the OCC at the topcamehectivity cascading down to the
DLPFC (i.e. a bottom-up hierarchy; Figure 3.4B)eTattern of results for the
manipulation classification shows a sparser graf, the DLPFC and FEF at the top of
an anterior to posterior hierarchy (i.e. a top-ddwararchy; Figure 3.4D). Here, being
placed at the top of the hierarchy indicates domiean the sense that a higher node
supports more information in outward flowing rathigan inward flowing directed
connectivity patterns. As in the previous two asab; we performed control

classifications with shuffled labels, confirmingetiaalidity of the analysis (Table S3.5).

Discussion

The mental workspace is a cognitive system thables the volitional, flexible
mental operations underlying the mathematicaldifie, and artistic creativity that
distinguish humans as a species (1, 65). Here wigedmovel network-level pattern
analysis methods to reveal the structure of infélonalow in the neural network that
supports the mental workspace. We find that thepmmant processes of representing
and manipulating visual imagery entail a levelrdbrmational organization that
transcends the anatomically-modular structuressiaatdard models of working memory
and related processes have regarded as functie@radppsulated modules. Instead, our
data imply that such processes emerge out of tidafuentally distributed sharing and

flow of information between the nodes of a cortadewnetwork. We found that
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representations entail the sharing and flow ofnmfation between all of the ROIs we
tested. Mental manipulations showed patterns @irimétion flow between all but one of
our ROIs, but we did not find significant sharinfgr@dormation at the scale of our fMRI
data after correcting for multiple comparisonss limportant to note, however, that
further information sharing and flow could have wred at spatial or temporal scales or
levels of information processing to which our datanalyses were insensitive. Because
fMRI data are temporally low-pass filtered by treodynamic response function, our
data can only address information flow that ocaurshe scale of seconds. Nonetheless,
our findings call into question ‘textbook’ anatomlig-modular models of the neural
basis of working memory and other higher order mleinctions (7, 38, 40, 41, 45).

Existing neural models of working memory and redgprocesses could be
described as “distributed” in the sense that thesygam the component functions of
working memory to anatomical modules that are itisted across the brain. However, a
key advance in the present study is to suggesethaat these component processes that
underlie the more complex functions we studieddsstibuted in the brain. Thus,
contrary to models such as Baddeley’s that localeecutive functions to lateral
prefrontal cortex and the storage of visual repregens to occipital cortex, our data
suggest that informational processing in the memtakspace is fundamentally
distributed. In other words, anatomy may be incidefor the high-level mental
functions studied here, with the actual functisseggaration of processes occurring at a
higher level of informational organization.

Our work advances recently developed analyticdirigues that approach the

brain as an information processing network. Multiai classification and
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representational similarity analyses allow the infational structure of processes at
many levels of organization to be probed (55, Bected connectivity measures enable
the investigation of effective functional couplibgtween network nodes (60, 61, 100—
102). Here, we adapted these techniques to anawardw kinds of question. First, our
ROI cross-classification analysis was able to emaluvhether information is shared
between multiple network nodes. Note that traddldRSA analyses as proposed by
Kreigeskorte (56) are not able to answer this goesfenerally. For instance, it could
have been the case that visual cortex represemtahimages only at a stimulus level
(e.g. edges, corners, contrast) while prefrontekegarepresents those images only at a
conceptual level (e.g. “the S-shape” or “the tadsilape”). In this case, the dissimilarity
structures derived from each ROI could still behtygcorrelated with each other (e.g.
shape 1 and shape 2 are similar at the stimules$ because they are both derived from a
rectilinear grid, and are also “conceptually” sinibecause they both look like letters).
However, these matching dissimilarity structuresilddave derived from very different
underlying informational spaces, and thus it wdugderroneous to conclude that the
correlation between those dissimilarity structunescated sharing of information
between the ROIs. The second question our new itpods allowed us to address was
whether patterns of information flow between netwoodes carry information about the
functional significance of the connections betwt®se nodes. These questions and the
techniques described here to investigate themearerglly applicable across a range of
topics both within neuroscience—for instance leagr(b0), intelligence (36), language
(2), and attention (103)—and in other fields thatyg similar informational networks in

biology and beyond (104).
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It should be noted that using fMRI restricted sensitivity to functional
interactions occurring at millimeter or larger spbhscales and on the order of seconds. It
is likely that we missed the distribution and shgrof information occurring in more
local small-scale neural circuits and on shorteescales than we could measure. For
instance, the reduced sharing of information amtheotivity we found for manipulations
of visual imagery may not be an indication thatrssiearing and connectivity do not
occur in the brain, if such processes happen at fipatial or temporal scales than fMRI
can measure. Additionally, focusing on the six Rt had previously shown
information pertaining to visual imagery increasieel power of our analyses within this
restricted network. However, this statistical poweis gained at the expense of
potentially missing a larger scope for the mentatkgpace network. Indeed, we
previously found six additional bilateral neuragi@ns in the cerebellum, thalamus,
medial temporal lobe, supplementary eye field, fbaperculum, and medial frontal
cortex with activity that differed depending on e visual imagery was manipulated
or maintained, but we could not classify betwedfedent mental operations in these
regions (95). Presumably, then, the mental workspatwork is even larger and more
distributed than we report here, with the contitnuof these additional nodes yet to be
determined.

While we found shared information pertaining tpresentations in each of the
ROIs we studied, an alternative explanation fos fimding could be that information
about representations merely spreads passivelydremgle area such as visual cortex
that actually processes that information. Howethex widespread bidirectional

information flow between many network nodes suggtsdt this is an unlikely
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possibility. The bidirectionality, density, and faechical nature of the connectivity
between these nodes lead more parsimoniously tat@npretation that the brain
processes mental visual representations in a fuedeaity distributed manner.

Finally, connectivity analyses such as those pitesemere are vulnerable to the
lurking variable problem, in which two network nedgppear to support a direct
informational connection when in fact each suppmdgpendent yet parallel processes
or is mutually driven by a third, unknown proce@sir information flow results may be
affected by this situation, since our network shdwealense pattern of connectivity and
we did not test each connection for mediating \dei® Because of this, we suggest that
these findings be interpreted more holisticallpesviding evidence for fundamentally
distributed information processing in the brairtheas than as having deduced a precise
wiring diagram of the mental workspace network.

Our results provide new evidence that high-levenitive processes such as the
representation and manipulation of visual imageeyraediated via the complex,
fundamentally distributed flow and sharing of infation throughout the cerebral cortex.
While much work in cognitive neuroscience has bamrcerned with reducing the
brain’s functions to discrete, localized regions; esults provide evidence that the
component processes of at least some forms oflaigt-cognition occur in a manner
that transcends any single neural structure, emgfgndamentally from the interaction
between several levels of organization (104, 106¢ field has found studying such
interactions vital yet difficult (92, 93, 105, 10@)nd the new methods reported here to
investigate the structure, sharing, and flow obinfation in the brain may prove useful

in understanding many other complex cognitive psses (2, 6, 36, 50, 103). Future
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work should investigate how precisely the distrdaltiow of information in the cortex
supports high-level cognitive abilities and whetties mode of information processing is

unique to certain forms of cognition or common asrmany cortical functions.

Materials and M ethods

Participants. 19 participants (6 females, aged 18-51 years) motimal or
corrected-to-normal vision gave informed writtemsent according to the guidelines of
the Committee for the Protection of Human Subjé€HS) at Dartmouth College prior
to participating. All experimental protocols weigpeaoved by CPHS (IRB #15822).
Participation consisted of two experimental sessione behavioral session in which
participants practiced the task until they reactréérion (described below) and a

subsequent 1.75 hour fMRI scanning session.

Experimental Design. During each of a series of trials, participantdqrened
one of four mental operations on one of four alestvesual shapes. The four mental
operations were: 90° clockwise rotation, 90° cotolvekwise rotation, horizontal flip,
and vertical flip. The four abstract shapes arevshim Figure 3.1: two shapes were
constructed from a 4 x 4 rectangular grid, and\weoe constructed from an analogous
polar grid. All shapes were matched for area. Tuaég|the visual presentation between
conditions, we did not display the shape or openatd use in a given trial. Instead, each
shape was mapped to one of the letters A, B, ©, @and each operation was mapped to
one of the numbers 1, 2, 3, or 4. Each participa# assigned a unique mapping and
spent the practice session committing the shapesabons, and mapping to memory.

The practice session concluded once the particigsponded correctly on 10
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consecutive trials. At the start of each trial-se2ond-long prompt screen displayed four
letter/number pairs (e.g. “C3”). An arrow point@dane of these pairs to indicate the
shape and operation to use for the current triais $creen was replaced by a fixation dot
for 6-s during which the participant performed theicated mental operation on the
indicated shape. After this period, a 2-second-l@&st)screen displayed each of the four
shapes at various orientations relative to theistporientations learned by the
participants. The participant was instructed tontdg the current trial’s shape on the
screen and indicate via a button press within2sgieriod whether it was in the
orientation that would result from the trial’s indited operation. In half of the trials the
shape was in the correct orientation, and in therdbalf it was in a random, incorrect
orientation. During the fMRI session, the operagiand shapes were counterbalanced
across all trials, and correct/incorrect trials drmsplay positions were randomized. In
order to encourage attentiveness, participants peatebased on their performance
(receiving money for correct responses and losingey for incorrect responses, with a
minimum base rate of reimbursement). Participaotspieted 15 fMRI runs, each of
which consisted of 16 trials interleaved with 8sext to ensure that the BOLD response
for a given trial was not influenced by activitpiin the previous trial (5'28” per run).
Thus, each stimulus and operation occurred fouggiper run (60 times in total during

the experiment), and 240 trials were administerest the scanning session.

MRI acquisition. MRI data were collected using a 3.0-Tesla Philipkieva
Intera scanner with a 32-channel sense head @aitdd at the Dartmouth Brain Imaging
Center. One T1-weighted structural image was c@teasing a magnetization-prepared

rapid acquisition gradient echo sequence (8.176R1s3172ms TE; 8° flip angle; 240 x
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220mm FOV; 188 sagittal slices; 0.9375 x 0.937%mrilvoxel size; 3.12 min
acquisition time). T2*-weighted gradient echo plamaaging scans were used to acquire
functional images covering the whole brain (2000Rs 20ms TE; 90° flip angle, 240 x

240mm FOV; 3 x 3 x 3.5mm voxel size; 0Omm slice gépslices).

MRI data preprocessing. High-resolution anatomical images were processed
using the FreeSurfer image analysis suite (89nhdatal preprocessing of fMRI data was
carried out: data were motion and slice-time cde®chigh pass filtered temporally with
a 100s cutoff, and smoothed spatially with a 6mhaviidth-at-half-maximum Gaussian
kernel, all using FSL (88). Data from each run weorcatenated temporally for each
participant after aligning each run using FSL’'s RLItool and demeaning each voxel’s
time course. For the ROI classification (describebbw), data were prewhitened using
FSL’s MELODIC tool (i.e. principal components wexnetracted using MELODIC'’s

default dimensionality estimation method with a muam of 10 components per ROI).

ROI Classification Analysis. Each trial could be labeled based on either tlapeh
that was represented in visual imagery or on tregaijon that was performed to
manipulate that representation. For each of thesdabeling schemes, we used
PyMVPA (90) to perform a four-way spatiotemporalltivariate classification analysis
in each of the six ROIs that showed informatiortggaing to manipulation of visual
imagery in a previous study (see Figure 3.2A) (&b)e of these (LOC, PPC, PCU,
DLPFC, and FEF) were bilateral ROIs that showeatgreactivity during visual imagery
manipulation than visual imagery maintenance irhalerbrain, group level general
linear model analysis (see Ch. 2 for details). €HROIs were transformed separately for

each participant from MNI space to that participanative functional space for use in

52



the current study. The remaining mask (OCC) wamddfanatomically in each
participant’s native anatomical space using thie¥ahg labels from FreeSurfer’s

cortical parcellation: inferior occipital gyrus aadlcus; middle occipital gyrus and sulci;
superior occipital gyrus; cuneus; occipital polgpearior occipital and transverse occipital
sulci; and anterior occipital sulcus (all bilatg¢r&or the control ROI analysis, the
thalamus was defined functionally as above, and/éméricle mask was defined
anatomically from the following FreeSurfer cortigarcellation masks: left and right
lateral ventricles, left and right inferior lateradntricles, & ventricle, 4' ventricle, and

5" ventricle.

For the spatiotemporal multivariate classificatwos used a linear support vector
machine classifier and leave-one-trial-out crodslation. Because we only considered
correct-response trials, a non-uniform numberiafdrexisted for each condition and
participant (57.4 trials per condition on avera8&IM: 0.203]; see Table S3.1 for
details). Even though the difference in numberriafs was small, we ensured that they
could not affect the classification results by utthg a target balancing step in our cross-
validation procedure. In this step, each clasgifbcafold was performed 10 times using
random, balanced samples of the data, and thesdsuthat fold were averaged across
the 10 bootstrapped folds. For each classificatierused the spatiotemporal pattern of
prewhitened BOLD data from the first 3 TRs of eaolrect response trial, shifted by 1
TR to account for the hemodynamic response fungttiRF) delay inherent in fMRI
data. We shifted by 1 TR only in order to includenauch trial data as possible without
also including data that could have been influerimethe test display. Pre-whitening

reduced each ROI's voxel-based pattern to an ageyf§3.6 data features (SEM: 4.83).
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Thus each classification used spatiotemporal pegtef, on average, 280.8 dimensions
(SEM: 14.5). Each feature dimension was z-scoredibyprior to classification to reduce
between-run differences in signal that may haveiged due to scanner or physiological

noise.

Our measure of classifier performance was the [atioa between the confusion
matrix resulting from the classification and thetnxaform of either the shape or
operation similarity structure (see Figure 2.1B & This measure is more sensitive than
classification accuracy because it also takesantmunt confusions between conditions
that result from the hierarchical relationship betw the shapes and between the
operations. We used a jackknife procedure to perfandom-effects analyses evaluating
the significance of the correlations (70). In tlase of noisy estimates such as individual
subject confusion matrices, jackknifed analysespramide cleaner results without
biasing statistical significance (see ref. (70)rfare details on this method). In a
jackknifed analysis witiN subjectsN grand means of the data (in this case, confusion
matrices) are calculated, each with one subjecoldf The correlation between each of
these grand mean confusion matrices and the mod#hsty structure was then
calculated, and a one-tailed t-test evaluated venetie Fisher'&-transformed
correlations were positive (i.e. whether there wagynificant correlation between
confusion matrices and the model similarity struetacross participants). Because the
jackknife procedure reduces the variance betwebests artificially, a correction must
be applied to thestatistic calculation; specifically, the samplarstard deviation

between correlations is multiplied by the squa of (N-1).
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ROI Cross-classification Analysis. To assess whether information about mental
representations or mental manipulations was sharadcommon format between areas,
we performed a cross-classification analysis inchta classifier was trained on data
from one ROI and tested on data from a second Ri@$. analysis used the same
procedures as the ROI classification analysis dest¢rabove. However, because the
voxel-based feature space of each ROI differed fitam pairs of ROIs needed to be
transformed into a common feature space priorasesification. In order to do this, we
first used FSL's MELODIC tool to transform each R{data from voxel space to 50
principal component signals using PCA. After thesps each ROI's pattern had the same
dimensionality, but those patterns’ features wdaddinlikely to correspond. Therefore,
for each pair of ROIs these component signals wextehed pairwise as follows in order
to maximize the total similarity between compongighals. First, the correlation
distance (1 +]) between each pair of components was calculgtelding a 50 x 50
correlation distance matrix. Next, the rows andiowis of this matrix were reordered
using the Hungarian algorithm to minimize the matrace (107). The components
meeting along the diagonal of this reordered, tragc@mized matrix defined the pairwise
matching. If two components were matched by thee@dure but were anti-correlated,
one component was negated in order to produceiygicorrelated component pairs.
We performed this matching procedure for each ébldhe cross validation
independently, excluding test data in order to @weilating the similarity between
training and testing patterns artificially. Oncestprocedure was complete, data from the
two ROls shared a common feature space, i.e. toddature spaces had the same

dimensionality and corresponding features in the $paces were maximally similar.
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Cross-classification could then proceed by trairihrggclassifier on data from one ROI
and testing it on data from the other ROI. Each B&®Ved both as the training set and as
the testing set, with results averaged betweetnwbeases. Figure S3.2 provides a visual
schematic of the cross-classification analysis @dace.

Information Flow Classification Analysis. The goal of this analysis was to
determine whether patterns of directed connectlvyveen processes occurring in pairs
of ROIs could be used to classify either mentatesentations or mental manipulations.
To this end, we transformed the functional datagiSiCA as above, but with
dimensionality fixed at 10 components. For eachi@pant, task condition (i.e. unique
combination of shape and operation), and direcéadgb areas (e.g. from PPC to
DLPFC), we then calculated the Granger-causalithh wilag of 1 TR between each
directed pair of principal component signals (bgfween componeniof PPC and
componenj of DLPFC). As input data for each component wedubke temporal
concatenation of data from the first 5 TRs of eemtiect-response trial of that condition,
shifted by 1 TR to account for the HRF delay. Facheparticipant and directed pair of
ROls, this procedure yielded 16 10 x 10 Grangesabgraphs which were used as the
patterns for classification. Each pattern was kdbélased on either shape or operation
and analyzed using a multivariate classificatiomase ROI classifications described
above. Because these patterns were defined fortasklzondition rather than for each
trial, we used leave-one-operation-out cross vabddor the representation analysis and
leave-one-shape-out cross validation for the mdaijmun analysis. Directed connections
with classification results that passed FDR coroector multiple comparisons across the

30 directed pairs in each analysis were used tetnact directed graphs which were then

56



sorted topologically (see Figure 3.4B & D). Fig®®.3 provides a visual schematic of

the information flow classification analysis proceel
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Ch. 4: Widespread information sharing integrates the motor network into the

mental workspace during mental rotation®

Abstract. Studies of mental rotation and similar cognitivdiaes suggest that the
manipulation of mental representations in the hubram resembles the physical
manipulation of real-world objects. Neuroscientigsearch has revealed that the
representations and operations underlying suchaheranipulations are implemented in
distributed information processing networks. Intigaitar, some neuroimaging studies
have found increased activity in motor regions migimnental rotation, suggesting that
mental and physical operations may involve oveilagppeural implementations. Does
the motor network contribute information procesgsimgnental rotation? If so, does it
play a similar computational role in both mentadl amanual rotation, and how does it
communicate with the wider network of areas invdlirethe mental workspace? Here
we use a variation of a classic mental rotatiomgam along with multivariate decoding
methods to investigate these questions. We findinfi@mation about mental rotations is
shared robustly throughout and beyond the motavarét and that this information only
partially resembles that involved in manual rotatibhese findings establish that the
motor network is recruited for mental rotation imanner that both resembles and differs
from analogous manual rotations. Additionally, gnéadings provide evidence that the
mental workspace is organized as a distributed mwetwork that dynamically recruits

existing subnetworks for specific tasks.

% This chapter is currently under review for pubtica (138).

58



Introduction

In a seminal experiment on the mental manipuladiovisual imagery, Shepard
and Metzler (16) asked participants to mentallpt®tisually presented three-
dimensional objects to determine whether they nemtdther similar objects.
Participants’ response times correlated tighthhwite angle of rotation that would be
necessary in order to align the two objects, suggethat they had mentally rotated
endogenous mental models of the objects in a asmtisi manner as if manually rotating
a physical object through space. Subsequent batahvesearch has explored other
operations such as mental paper folding (17), éreeation and analysis of mental
analog clocks (18), and mental simulations of mewah systems (10), a primary result
being that volitional mental operations appear angnrespects to resemble their
corresponding physical operations. Other work lesichented similar processes in
domains such as mental time travel (19), creatmehesis of mental imagery (20), and
visuospatial reasoning (21). Thus, the human kappears to support a mental space
analogous to the physical world in which mental gledtan be constructed, manipulated,
and tested in a flexible manner.

Such abilities have been studied using severalamang psychological
constructs including working memory (7), mental geey (8, 91), visuospatial ability
(9), mental models (10), analogical reasoning (&tyl the mental workspace (1).
Following Logie (1), we will refer to the mentalage in which these flexible cognitive
processes occur as the mental workspace.

What is the neural basis of this mental workspheg dppears to be so central to

the human capacity for imagination? While tradiibneural models of working memory
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and related processes posit an anatomically-modugmnization in which physically
segregated regions implement component functiodis as a “central executive” or a
“visuospatial sketchpad” (7, 38, 40, 44, 53), relsetieveloped information- and
network-based neuroscientific methods suggestaddtgat the mental workspace and its
component processes may be implemented in a fundalyedistributed manner across
the cortex and related regions (46-51, 95, 108)ahticular, in a recent study we showed
that information about both visual mental imageang anental manipulations of that
imagery is distributed among several regions adfessortex and that this information is
shared in a common format via complex, hierarcipedierns of information flow (108).
If, as these studies suggest, information is furetaaily distributed across the cortex
during such high-level mental activity, then hovdavhere does this information
originate? Cognitive work such as that of Shepauti Metzler suggests the possibility
that, in order to direct actions within the mentakkspace, the brain may recruit existing
neural circuitry that evolved for interactions witte physical world.

In fact, several neuroimaging studies have repatdgation in various motor
areas during mental rotation tasks (33, 109-113ddition, Kosslyn and colleagues
(114) found evidence that participants can be #&hto simulate the mental rotation of
objects as if they were rotated manually by thedhdiese findings support the idea that
the mental workspace permits mental operationsndogenously constructed models as
if they existed physically. However, these neuraimg studies have given inconsistent
accounts of the motor regions involved in ment&dtron. Moreover, the functional role

of the increases in cortical activation found inlieastudies is difficult to interpret.

60



Given the ambiguity and diversity of past findingss still unclear precisely what role

motor processing may play, if any, in mental ratati

Figure 4.1. Experimental design

A. The four 90° mental rotations used in thg B
@ Z-axis X-axis

experiment. Left (“L") and right (“R”)
rotations occurred along the z-axis, while
’ R o4 |2
(13 til (3 " T o o
forward (“F") and backward (“B”) rotations L .
occurred along the x-axiB. The four OB

BE-

rotation directions are related in a two-level %

hierarchy, such that trials involving a given
rotation are most similar to other trials

involving the same rotation, moderately

similar to trials involving opposite rotations

along the same axis, and least similarto  \_ .
trials involving rotations along a different 2s: blank
axis. This similarity structure is encoded in
the model similarity matrix presented. A \
schematic of the trial design. In screen 1 the
2s: test
stimulus figure and mental rotation for the
current trial are presented. In screen 2 only

a fixation dot is shown. During these first

2s: feedback
8s of the trial, participants perform the
indicated mental rotation and a concurrent

fixation task to ensure that they do not move thainds in accordance with the mental rotatinrscreen !

a test figure appears, and participants indicatetdr this figure matches the result of the menatiation.

In screen 4 participants are given feedback altmit tesponse.
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In light of the above findings and an emerging vigwhe mental workspace as
both highly flexible and fundamentally distributedg hypothesized that the network
underlying the core functionality of the mental w&wace would recruit the motor
network into a larger, dynamically constructed regtnin order to carry out mental
rotation. Here, we define the motor network assiteof brain regions that are
responsible for the planning, production, and nwmg of movements. In order to test
the hypothesis that the role of the motor netwarknental rotation is to simulate the
execution of physical rotations on imagined mergptesentations, we additionally
investigated the relationship between informaticmcpssing in the motor network during
mental rotations and information processing dudagesponding physical hand
(“manual”) rotations.

In a variation of Shepard and Metzler’'s classiadaym, we recruited 24 right-
handed participants for an initial behavioral sessind a subsequent functional MRI
(fMRI) scanning session in which they complete@es of trials involving either the
mental rotation of three-dimensional cube assenglslégee Figure S4.1) or
corresponding manual rotations. Figure 4.1C pravalgisual schematic of the
experimental trial design. In each mental rotatrgad, participants mentally rotated a
presented stimulus figure by 90° in one of fourduehically related rotation directions
(Figure 4.1A & B). In manual rotation trials, parpants merely rotated their empty right
hand in analogous directions. Because of the lukieal relationship among the rotation
directions, we could use multivariate decoding rad#hto evaluate whether rotation-
specific information processing in a set of cottemad subcortical regions of interest

(ROIs) matched the informational structure of th&ation operations themselves, thus
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providing a strong test of the functional role atk ROI in the network during mental
rotation. We additionally used a newly developed B@ss-classification analysis to
evaluate whether the information carried by eadivodk node was shared among all
nodes in a common format (108), as would be exdattaformation processing in the
mental workspace is fundamentally distributed.

We used two strategies to evaluate the hypothlesishe motor network’s role in
mental rotation is related to its function durifgypical motor actions. First, we used a
two-group training design similar to that used lysklyn and colleagues (114) to
evaluate whether the neural similarity of mental aranual rotations could be
manipulated. In an initial behavioral session, ipgrants were randomly assigned to one
of two training groups without their knowledge aubsequently completed 100 training
trials. Interleaved on half of the training sesdiaals, participants in the first “non-
motoric” training group were shown an animatiortted stimulus figure being rotated; in
the subsequent fMRI session they were told to “imaghe mental rotations as an
internal movie playing in your head.” Instead o #imimations, participants in the
second “motoric” training group were provided withysical wooden replicas of the
stimulus figures that they could rotate manualtythe fMRI session they were told to
“imagine rotating your mental image as you didphgsical model.” Our second strategy
to evaluate the role of the motor network was tdquen a cross-classification analysis
comparing the fMRI data from mental rotation anchor rotation trials in order to
assess whether information processing in the mmatwork during mental rotation trials

resembles information processing during analogoasual rotation trials.

63



Results

Performance accuracy was high during the fMRI s@&s@nean correct response
rate was 88.5% [S.E.M. 1.02%] across all participamd conditions), indicating that
participants had little difficulty carrying out thestructed mental rotations. A one-way
analysis of variance showed no significant diffeesnin the correct response rate
between conditiong(3,92) = 1.33p = 0.270], confirming that the difficulty was well
matched between rotation conditions (see Table &4 liehavioral results separated by
rotation direction). We additionally found no sificant behavioral differences between
the two training groups [correct response ratenfor-motoric training group: 86.2%
(S.E.M 2.87%); for motoric training group: 90.9%HKESM 1.64%)t(22) = -1.42p =
0.170].

ROI Classification Analysis. We defined 13 ROIs for each subject that we
evaluated for mental rotation-specific informatjmocessing using a multivariate
classification analysis (Figure 4.2A & B). Severtlugse ROIs were anatomically defined
regions of the motor network, and six were previpghown to form part of a cortex-
wide network of regions that mediate mental worksparocesses (95, 108) (see
Materials and Methods for details on how each R@s defined). The classification
analysis used a standard cross-validation procg@@je Briefly, in each fold of the
cross-validation, a linear support vector machiasssfier was initially trained by
presenting it with a set of brain activity pattedesived from individual correct-response
mental rotation trials along with the directionstio¢ rotations performed on those trials.
In a subsequent testing step the classifier wasepted with a holdout sample activity

pattern without a rotation-direction label andalslity to correctly label the pattern based
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on the previous training step was evaluated. Ttosgrlure was performed individually

for each ROI and participant.

Figure 4.2. ROI classification results
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test comparing FisherZ-transformed correlations to zero across subjécts €= 0.05; ***: p <= 0.001;

*(: p <= 1 x 10"). Results are false discovery rate (FDR) correfednultiple comparisons across the 13

ROls.
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The result of each cross-validation was a 4 x 4us0n matrix that represented a
summary record of the classifier's predicted labelative to the true target labels across
all cross-validation folds. A perfect classifier wid yield a confusion matrix with non-
zero values only along the diagonal, since cetia@gthe diagonal represent instances in
which the target and predicted labels were the s&loeever, because we used mental
rotations that shared a specific hierarchical sinty relationship (see Figure 4.1B), we
expected the classifier to make a specific paidéconfusions among the brain activity
patterns in ROIs that were involved in carrying thidse mental rotations. For example,
we expected that the classifier would confuse tartghtion with a right rotation (both
along the z-axis) more often than it would confageft rotation (z-axis) with a forward
rotation (x-axis), but only if the information pregsing underlying the brain activity
patterns was related specifically to mental rotatithus, our measure of classifier
performance was the correlation between the coorfusiatrix resulting from the cross-
validation and the matrix form of the rotation-aiien similarity structure shown in
Figure 4.1B. Note that because we used correlasaour measure, the specific
numerical values of this model similarity matrixearrelevant. Only the relative
magnitudes of values matter for the correlatiocdation, in this case signifying that a
trial involving a particular rotation direction msost highly related to trials with the same
rotation, moderately related to trials with oppesiitations along the same axis, and least
related to trials with rotations along a differemis. We have successfully used this
confusion matrix correlation measure in previouslgs to probe the complex structure

of information processing in the mental workspa® (L08).
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We conducted this procedure for each ROI and ppaiit individually, and then
assessed the information content within each RQidrforming an across-subject
random effects analysis to determine whether afgignt correlation existed between
that ROI's confusion matrices and the model rotaticection similarity matrix. Results
of this analysis are presented in Figure 4.2C, amgpwhat each of our 13 ROIs supported
robust information processing related to mentadtron (all results are false discovery
rate [FDR] corrected for multiple comparisons asrtbge 13 ROIs; see Figure S4.2 for
confusion matrices for each ROI). This result magms surprising according to
traditional models of functional localization, sinit indicates that areas as seemingly
unrelated to the rotation directions as occipitatex and primary somatosensory cortex
carry information about specific mental rotatioHewever, this finding is consistent
with previous results suggesting that informationcessing in the mental workspace is
fundamentally distributed in the sense that tradal anatomical boundaries of
functionality break down in these high level memtiadcesses. In particular, this analysis
establishes robustly that information processihgted directly to mental rotation occurs
throughout the motor network.

ROI Cross-classification Analysis. We next sought to assess whether the
processing of mental rotations is truly distribugedoss the 13 regions of this network.
An alternative possibility is that each of the &8ions plays a role in mental rotation, but
that processing in each area is functionally isalats would be expected in the case of
anatomically-modular functional localization. Intigating this question also allowed us
to evaluate whether the motor network plays a sgpaole or becomes tightly integrated

into the larger mental workspace network during talertation. We used a recently
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developed ROI cross-classification analysis toss#eese alternatives. In this analysis a
classifier is trained on data from one ROI andeigsin data from a different ROI (108).
A successful cross-classification would providedevice that information is shared in a
common format between the two ROIs. An unsuccessfids-classification would leave
open the possibility that the two ROIs represefdrmation in separate formats.

A technical challenge to cross-classifying betwB€is is that each ROI exists
initially as an incompatible voxel-based featurac(i.e. each ROI consists of a
different number of voxels [feature dimensions]d émere is no meaningful mapping
between the voxels of each ROI). Thus, cross-d¢leason between two ROIs first
requires data from the ROIs to be transformedantommon feature space. See ref.
(108), Materials and Methods, and Figure S3.2 &tails of this method. Briefly, we
conceptualize our data as reflecting a set of hegkt cognitive processes that are mixed
between the voxels of the ROIs. A principal compuas@nalysis (PCA) rotation
performed independently on the voxel-based data frach ROI allows us to transform
our data from voxel-space to process/componentesad additionally to control the
dimensionality of each of the two feature spaces.sét the dimensionality of each
ROI’s feature space to a fixed value (in this ca@alimensions), and then pair up feature
dimensions between the two ROIs in order to mayentie total correlation between
component signals. This procedure is performedpaddently for each fold of each
cross-validation, leaving out data from the tessegin order to avoid artificially

inflating the similarity of test patterns across ttvo ROIs.
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Figure 4.3. ROI cross-classification results
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Other than the feature-space transformation arddrdiice in training and testing
data sets, the ROI cross-classification was corduexactly as described for the ROI
classification above. We performed this cross-diassion analysis for each ROI pair,
with results shown in Figure 4.3 (all results FDétrected across the 78 ROI pairs).
Each arc represents a successful cross-classaficatidicating that information
associated with mental rotations is shared betlegpair of ROls. Connections within
the motor or core mental workspace subnetworkslaoe/n in light orange and light

blue, respectively, while connections across tiesesubnetworks are shown in dark
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blue. We could successfully cross-classify betwmest pairs of ROIs, suggesting that
information processing related to mental rotatisnshared in a distributed manner across
the network. In particular, a robust set of conioest exist both within and between the
motor network and other mental workspace regiamggaesting that the motor network
becomes tightly integrated into the greater mentakspace network during mental
rotation.

Mental/manual rotation cross-classification. What role does the motor network
play in mental rotation? To assess the possililigy the mental workspace recruits the
motor network to simulate mental rotations as étlvere manual rotations of physical
objects, we performed a cross-classification amakyghin each ROI in which we
trained a classifier on data from mental rotatioeis and tested it on data from manual
rotation trials, and vice-versa. A successful cidassification in a given ROl would
imply that mental and manual rotations share opeitey neural implementations within
that ROI. Other than the difference in training &esting data sets and the different
number of cross-validation folds (data in this gee were partitioned by mental/manual
rotation condition rather than by trial), the cifisation analysis was performed and
evaluated exactly as in the ROI classification ysial Results of the cross-classification
for each ROI are presented in Figure 4 (all redtD&-corrected across the 13 ROIs).
Three ROIs showed significant informational simtlabetween mental and manual
rotations. One of these ROIs, primary motor corntexs in the motor network, and two
ROlIs, posterior parietal cortex and precuneus, \wetlee core mental workspace
network. Two additional ROIs showed significantsg-lassification results that did not

pass multiple comparisons correction (supplementartor area and dorsolateral
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prefrontal cortex). Thus, some of the tested R@fear to share overlapping
implementations of mental and manual rotations]ewiihers may implement each

process in a distinct manner.
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Figure 4.4. Manual/mental cross-classification results

Results of four-way classification analyses in wihice classifier was trained using data from mental
rotation trials and tested using data from mano@tion trials, and vice versa. Correlations betwee
resulting confusion matrices and the similarityisture in Figure 4.1B are FisheZstransformed. Error
bars are jackknife-corrected standard errors ofthan (see Materials and Methods). Asterisks inelica
significance in a one-tailed jackknifed t-test campg Fisher'sZ-transformed correlations to zero across
subjects (#p <= 0.05 before FDR correction; f:<= 0.05; **: p <= 0.01). Results are false discovery rate
(FDR) corrected for multiple comparisons acrossitBérROls. Abbreviations and ordering are the sasne a

in Figure 4.2.

Between-group differencesin mental rotation. We reported above that the non-
motoric and motoric training groups did not shogn#icant differences in behavioral
performance. However, as Kosslyn and colleague$) (duiggest, participants in different

training groups may still have employed differeogcitive strategies that would lead to
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differences in information processing when perfeargnmental rotation. We conducted
several analyses to evaluate this possibility.

First, we conducted a univariate analysis simoathtit used by Kosslyn and
colleagues (114) to assess whether training inddifestences in mental rotation-related
brain activity. We initially restricted our analggo the 13 ROIs from the previous
analyses. For each ROI and participant we calalildte mean blood-oxygenation-level
dependent (BOLD) activity change during mentaltrotatrials. For each ROI we then
performed a two-tailed, unpaired t-test to assdether these mean mental rotation-
related activity levels differed between the twoiugrs. No ROI showed a significant
difference in activity after FDR-correction acrake 13 ROIs (see Table S4.2 for
results). We next conducted an analogous but mqremtory whole-brain analysis to
identify regions of the cortex that showed differes in activity between the two groups.
No voxels were significant in this analysis aft€H=correction.

While we found no univariate differences in bragtivaty between the two
training groups, our more sensitive multivariatalgsis might still show that information
processing differed between the groups. To ashespdssibility, we performed two-
tailed, unpaired t-tests as above but compare®@ieclassification results, the ROI
cross-classification results, and the mental/maargas-classification results between the
two groups. Each set of t-tests was FDR-correctddpendently, and none of these tests
showed significant differences between the two gsaafter correction (see Table S4.3,
Table S4.4, Table S4.5). Thus, we failed to repdiche findings of Kosslyn and
colleagues (114), since none of our multiple aredyfsund a behavioral or neuronal

difference between the two groups due to the tngimanipulation.
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Discussion

Here we investigated the role of the motor netwdirking mental rotation and its
integration into the wider mental workspace. Wenibthat the motor network supported
robust information processing related directly temal rotation and that this processing
became dynamically integrated with the distributamtex-wide neural network
underlying the mental workspace. These findingpstipa model of the mental
workspace as consisting of a flexible core netvibdt can dynamically recruit domain-
specific subnetworks for specific functions, muike la general contractor would employ

specialists as needed for specific jobs.

Each of the seven motor network ROIs that we teséeded information about
specific mental rotations. This result held eveprimary somatosensory cortex, a region
better known for its role in mediating peripherahsation. While perhaps surprising,
several previous studies of mental rotation haveadancreases in activity during mental
rotation in this and several other areas of theega{33). The present results move
beyond this previous work by showing that actiwityeach of these regions is specific to
the mental rotations that participants performdadisTmany areas in and beyond the

motor network appear to play a functional roleanrging out mental rotations.

Not only do regions throughout the cerebral anéloeltar cortex support
information specific to mental rotation, but thidarmation additionally appears to be
shared in a common format throughout a widely iisted network. Our ROI cross-
classification analysis found that many pairs oflRi@ the network that we studied
shared information in the sense that a classibatccuse information from one ROI to

make a mental rotation-related prediction baseshfmmmation from a different ROI.
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This information sharing held true both within tietor network, suggesting that several
subregions of the motor network become tightlygni¢ed during mental rotation, and
also between the motor network and a core netwbr&gons underlying the mental
workspace. Such widely distributed information abmental rotations and the associated
dense pattern of information sharing suggest tifatmation processing in mental
rotation entails a breakdown in the anatomical ntextty argued for by models of the
cortex that are based on functional localizatiorsupport of this view, a recent
neurophysiological study by Siegel and colleagdé®) suggests that anatomically
segregated regions may only show functional speatabn in the early stages of
processing, whereas later stages of informationgasing occur in a much more
distributed manner. Our ROI cross-classificatiosuits suggest that a common
representational format may underlie the interaregi communication and coordination

that would be required within such a distributestsyn.

Our findings are consistent with a model of the takworkspace that involves a
domain general core network that can recruit atpecialized subnetworks (e.g. the
visual cortex or motor network) for specific tagsitssneeded. In particular, we found that
the motor network was recruited and tightly intégdainto a wider network during
mental rotation. Consistent with the proposal thatmotor network’s role is to simulate
rotations of imagined objects as if they existeggutally, we found that information
processing in some regions of the network resemhbfedmnation processing that
occurred during actual physical hand rotations. e\ev, in other regions both within and
outside the motor network we found no similarityvizeen mental and manual rotations.

We also did not find that training participantghiak of mental rotations as simulations
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of manual manipulations of physical objects had affgct on subsequent neural activity.
The reason for our failure to replicate the effegtorted by Kosslyn and colleagues (114)
is unclear. However, this difference in results raagerscore the flexibility of the mental
workspace that could allow different participanbgps to implement the same functions
(e.g. mental rotation) using widely different séigies. In sum, our results suggest that,
while the motor network may contribute specialiaetion-related functionality to the
mental workspace during mental rotation, its canstit nodes are also recruited in novel

ways for processing that is unique to purely mesitallations.

Much of the last two decades of cognitive neurasmearesearch has been
concerned with assigning functions to localizedaeg of the cortex in what has been
described as a kind of “neophrenology” (52). Howevecent studies such as ours and
that of Siegel and colleagues (95, 108, 115) aodntework focusing on the brain as a
densely connected network (46, 104) suggest insteddhigh level cognition and
possibly cognition generally may entail fundamdutdistributed processing and the
breakdown of local specialization of function. Ftmore, these findings suggest that
distributed informational processing may coexigtviunctionally localized processing,
either on different timescales or at different lev& informational organization. These
new models may hint at a level of neural informafwocessing that could form the basis
of conscious activity similar to that of the Glovabrkspace Theory proposed by
researchers such as Baars and Dehaene (65, 11)revhaining consistent with
localized accounts proposed by Zeki and others)(Future work should investigate the
range of cognitive processes that entail dynanyichditributed processing such as that

described here. Is this kind of fundamentally distied information processing unique to
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high level mental functions, or might new methodmtal advances reveal that

distributed processing is the rule rather thanetkeeption for the brain?

Materialsand Methods

Participants. 24 participants (11 females, aged 18-24 years$) mormal or
corrected-to-normal vision gave informed writtemsent according to the guidelines of
the Committee for the Protection of Human Subjati@artmouth College prior to
participating. All were right-handed according e tEdinburgh Handedness Inventory
(118). Participation consisted of two sessions: lmeteavioral session in which

participants were trained in the task and a sulm®diVIRI scanning session.

Task. During each trial, participants performed oneafrfmental rotations on
one of eight figures derived from Shepard and Meg1zl(16) original stimulus set
(Figure S4.1). All rotations were 90°; two rotatsorwere along the x-axis (called
“forward” and “backward” rotations) and two rotat®were along the z-axis (called
“left” and “right” rotations) (see Figure 4.1A). Elatrial lasted 12s and consisted of three
phases: the task prompt and operation phase (@shes$t phase (2s), and the feedback

phase (2s) (see Figure 4.1C for a visual scheroftlre following trial description).

At the beginning of the prompt/operation phasegralomly chosen figure from
the stimulus set, 8° of visual angle in size, wasn centrally. The figure was shown
either as depicted in Figure S4.1 or flipped actbhssy-axis, and additionally either un-
rotated or rotated 180° along either the x- or @saxSuperimposed on this figure in
partially transparent text were two prompts: ab@endomly permuted sequence of the

letters L, R, F, and B, and below, an integer fibto 4. The integer indicated the
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position of the letter in the above sequence thabted the mental rotation to carry out
on the current trial (e.g. the integer “3” showmowethe sequence “BLFR” would refer
to the “F” and indicate that the current trial edlifor a forward rotation). The trial's
rotation was indicated in this way in order to dquae visual stimuli across the four
mental rotation conditions. Had each rotation’sesponding prompt letter appeared
alone on each trial, the visual stimulus would thawe differed systematically between
conditions and created a possible visual confoarttle subsequent multivariate
classification analyses (described below). Oneccaujue that increased attention was
still directed to the indicated letter and thus rhaye led to systematic differences in
visual representational processing between comditidlowever, our confusion matrix-
based classifier performance measure (describesavbekerved as a control for this
possibility, as it was sensitive to a particulausture of relationships between the

rotation directions that did not occur betweendtimulus letters.

The figure and rotation direction stimuli remair@dscreen for 6s and were
replaced by a blank screen for 2s. The participa instructed to perform the indicated
mental rotation on the presented figure and totcoatsas vivid a mental image of the
output as possible during this 8s period. Additliyna red fixation dot appeared
centrally during this phase of the trial. The figatdot blinked blue on average once
every 2s, and the participant was instructed tsgtiee “up” button on a four-button box
held in the right hand whenever this color changsuaed. This fixation task was used in
order to minimize the chance that participants migave their hands to mimic the

mental rotation being performed.
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After the prompt/operation phase, a test figuresapg@d on the screen for 2s. On
half of trials, the test figure was the initial prpt figure after having undergone the
indicated rotation (“correct” figure); on the othHwaalf of trials, the test figure was a y-
axis-flipped version of the initial prompt figureat had undergone the same rotation
(“mirror image” figure). Participants were instradtto indicate within the 2s that the test
figure was present on screen whether it was thecbfigure (“left” button) or the mirror

image figure (“right” button).

Finally, a feedback screen indicated whether thiegg@ant made the correct
response and, during the fMRI session, the curemtbursement amount. As an
incentive to attend carefully during the approxietyatl.5 hour fMRI session, participants
gained $0.125 for each correct response and I082%0or each incorrect response, with

a baseline, minimum reimbursement of $20 and a mmaxi of $40.

Each 5 minute, 28 second run of the fMRI sessiorsisted of 16 trials (4 trials
of each rotation type in counterbalanced orderfy &s of rest in between each trial. The
fMRI session consisted of 10 runs of mental rotatr@als followed by 3 runs of
analogous hand rotation trials, in which physicaéations of the right hand were
performed instead of mental rotations. Hand rotati@ls matched the design of the
mental rotation trials, except that no figures warewn, no fixation task or test response
was required, and participants merely rotated thgint hand continuously according to
the prompt until the word “Stop” appeared at tineetiat which the feedback screen
appeared during mental rotation trials. Beforetthied rotation runs, videos were shown
to the participant to demonstrate proper handioytah each of the four directions. Hand

rotations resembled the motor actions that woulgdyérmed if a physical object was
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rotated in the same manner as the mentally rofageces. Even though left and right
rotations and forward and back rotations, respelgtjvnvolved back and forth hand
rotations along the same axis, participants westunted and the videos demonstrated
that more emphasis should be placed on motionamniicated direction (e.g. more
emphasis on the forward phase of rotation durimgdiod rotation trials). Participants
were not told about the hand rotation runs unélytbccurred, in order to avoid biasing

participants to imagine their hands as playingla imthe mental rotations.

Training. During the initial behavioral session, particiganere instructed in the
task and completed 100 practice trials. The proopetation phase of practice trials was
self-paced: participants viewed the prompt stimfitusas long as desired and indicated
with a key press when they were ready for thegkase. In half of the practice trials, the
prompt stimulus was accompanied by a guide totgsaiicipants in performing the
mental rotation, and in the other half of the &ide prompt occurred without a guide.
Guide and no-guide trials were interleaved. Withbeir knowledge, participants were
divided randomly into two training groups (12 peagants in each group). In the non-
motoric training group, the guide was a loopinghetion shown below the prompt
stimulus that depicted the figure undergoing tlteaated rotation. In the motoric training
group, the guide was a physical, wooden modelrttesthed the prompted figure and

that participants held and rotated manually.

MRI acquisition. MRI data were collected using a 3.0-Tesla Philipkieva
Intera scanner with a 32-channel sense head @aitdd at the Dartmouth Brain Imaging
Center. One T1-weighted structural image was c@teasing a magnetization-prepared

rapid acquisition gradient echo sequence (8.176R1s3172ms TE; 8° flip angle; 240 x
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220mm FOV; 188 sagittal slices; 0.9375 x 0.937%mrilvoxel size; 3.12 min
acquisition time). T2*-weighted gradient echo plamaaging scans were used to acquire
functional images covering the whole brain (2000Rs 20ms TE; 90° flip angle,

240x240mm FOV; 3 x 3 x 3.5mm voxel size; 0Omm sfjap; 35 slices).

MRI data preprocessing. High-resolution anatomical images were processed
using the FreeSurfer image analysis suite (89). [filHRa were motion and slice-time
corrected, temporally high pass filtered with a4.00toff, and spatially smoothed with a
6mm full-width-at-half-maximum Gaussian kernel,@ing FSL (88). Data from each
run were concatenated temporally for each partntipfter aligning each run using FSL’s
FLIRT tool and demeaning each voxel’s timecourse.the ROI classification
(described below), data were prewhitened for eadhdeparately using FSL’s
MELODIC tool (i.e. principal components were extetusing MELODIC’s default

dimensionality estimation method with a minimuml@fcomponents per ROI).

ROI classification. For each of the 13 ROIs, we used PyMVPA (90) tdgoe a
spatiotemporal multivariate classification analys$ween the four mental rotation
directions. Five of these ROIs (LOC, PPC, PCU, DCP&nd FEF) were functionally-
defined, bilateral masks in MNI space that werattiansformed into each participant’s
native functional space. In a previous study tHe®eROIs, along with an occipital
(OCC) ROl that was defined anatomically for eachipi@ant, supported information
about the manipulation of visual imagery (95). ™@C ROI was defined in each
participant’s native anatomical space using thievahg labels from FreeSurfer’s
cortical parcellation: inferior occipital gyrus aadlcus; middle occipital gyrus and sulci;

superior occipital gyrus; cuneus; occipital polgpearior occipital and transverse occipital
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sulci; and anterior occipital sulcus (all bilatgrdlhe remaining seven motor network
ROIs were defined anatomically using the followkrgeSurfer labels (again all
bilateral): CERE (cerebellar cortex); PS (postamdyrus); PM (precentral gyrus, central
sulcus, precentral sulcus [inferior and superiotgdp preMd (posterior third of the
middle frontal gyrus, lateral half of the posteribird of the superior frontal sulcus);
preMv (inferior frontal sulcus, opercular part bétinferior frontal gyrus); SMA
(posterior third of the superior frontal gyrus, nadhalf of the posterior third of the
superior frontal sulcus); preSMA (middle third fime posterior-anterior direction] of the
superior frontal gyrus). In a post-processing $tegach participant, voxels that were
initially shared between multiple ROIs were assijteonly one ROI using the
following, descending order of preference: preMeNdd, SMA, preSMA, PM, PS,
CERE, DLPFC, FEF, PPC, PCU, LOC, OCC. The ROls shiowigure 4.2A & B were
created as described above but for the MNI temjplet. For the spatiotemporal
multivariate classification we used a linear suppector machine classifier and leave-
one-trial-out cross validation. Because we onlyscdered correct-response trials, a non-
uniform number of trials existed for each conditard participant (35.4 trials per
condition on average; see Table S4.1 for detdthg¢n though these differences were
small, we ensured that they could not affect thesification results by including a target
balancing step in our cross-validation procedurehis step, each classification fold was
performed 10 times using random, balanced samplé® draining data, and the results
for that fold were averaged across the 10 bootg&@folds. For each classification we
used the spatiotemporal pattern of prewhitened B@afa from the first 5 TRs of each

correct response trial, shifted by 1 TR to accdanthe hemodynamic response function
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(HRF) delay inherent in fMRI data. We shifted byyoh TR in order to include as much
trial data as possible. Pre-whitening reduced &40lis voxel-based pattern to an
average of 72.3 data features (SEM: 3.69). Thul elassification used spatiotemporal
patterns of, on average, 361 dimensions (SEM: 1B&Qh feature dimension was z-
scored by run prior to classification to reducenssn-run differences in signal that may

have occurred due to scanner or physiological noise

Our measure of classifier performance was the [atioa between the confusion
matrix resulting from the four-way classificationdathe matrix form of the rotation
similarity structure (see Figure 4.1B). This measarmore sensitive than classification
accuracy because it also takes into account canfsdietween conditions that result
from the hierarchical relationship between thetrotes. We used a jackknife procedure
to perform random-effects analyses evaluating idn@fscance of the correlations (70). In
the case of noisy estimates such as individuakstiopnfusion matrices, jackknifed
analyses can provide cleaner results without bigstatistical significance (see ref. (70)
for more details on this method). In a jackknifedlgsis withN subjectsN grand means
of the data (in this case, confusion matrices)cateulated, each with one subject left out.
The correlation between each of these grand meafingion matrices and the model
similarity structure was then calculated, and atailed t-test evaluated whether the
Fisher'sZ-transformed correlations were positive (i.e. wietimere was a significant
correlation between confusion matrices and the irgidelarity structure across
participants). Because the jackknife procedureceslthe variance between subjects
artificially, a correction must be applied to thstatistic calculation; specifically, the

sample standard deviation between correlationsuliphed by the square root oR{1).
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ROI Cross-classification Analysis. To assess whether information about mental
rotations was shared in a common format betweesavee performed a cross-
classification analysis in which a classifier wasrted on data from one ROI and tested
on data from a second ROI. This analysis usedaheprocedures as the ROI
classification analysis described above. Howevetabse the voxel-based feature space
of each ROI differed, data from pairs of ROIs nekttebe transformed into a common
feature space prior to classification. In ordedacthis, we first used FSL's MELODIC
tool to transform each ROI's data from voxel sp@cB0 principal component signals
using PCA. After this step, each ROI's pattern thedsame dimensionality, but those
patterns’ features would be unlikely to correspoFiterefore, for each pair of ROls these
component signals were matched pairwise as foliovesder to maximize the total
similarity between component signals. First, theaation distance (1 r|) between
each pair of components was calculated, yieldiBf & 50 correlation distance matrix.
Next, the rows and columns of this matrix were deoed using the Hungarian algorithm
to minimize the matrix trace (107). The componenéeting along the diagonal of this
reordered, trace-minimized matrix defined the pamesmatching. If two components
were matched by this procedure but were anti-cated| one component was negated in
order to produce positively-correlated componeimisp&Ve performed this matching
procedure for each fold of the cross validatiorejmehdently, excluding test data in order
to avoid inflating the similarity between trainiagd testing patterns artificially. Once
this procedure was completed, data from the twosRsBared a common feature space,
i.e. the two feature spaces had the same dimeriigyoswad corresponding features in the

two spaces were maximally similar. Cross-clasdgifocacould then proceed by training
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the classifier on data from one ROI and testiranitlata from the other ROI. Each ROI
served both as the training set and as the teséigvith results averaged between the
two cases. Figure S3.2 provides a visual scherohtlte cross-classification analysis

procedure.

Mental/manual rotation cross-classification. To assess whether motor
involvement in mental rotation resembled motonaigstiduring physical rotation of the
hands, we performed a cross-classification anafgsisach ROI in which we trained a
classifier on data from the mental rotation treahsl tested the classifier on data from the
manual rotation trials, and vice-versa. Mental tiotatrials were given the same labels as
the corresponding manual rotation trials (e.gldrnia which forward mental rotations
were carried out were given the same label astmaivhich a forward hand rotation was
prompted). The classification analysis was perfatiaed evaluated identically to the
ROI classification analysis described above extmphe difference between training
and testing datasets. Note that each cross-validatvolved only two folds in this
analysis (train on mental rotation and test on mamatation, train on manual rotation
and test on mental rotation), but the same 10-sditdoget balancing procedure was used

to ensure that training data were balanced.

ROI BOLD comparison of training groups. To assess whether the two different
training procedures induced differential brainatgithat reflected different cognitive
strategies employed during mental rotation, foheR©I| we conducted a two-tailed
unpaired t-test across participants comparing-takted mean blood-oxygenation-level

dependent (BOLD) activity between the training greu
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We initially used FSL’'s FEAT tool to perform a firevel whole-brain GLM for
each participant in which we defined boxcar prexfor correct response and incorrect
response trials. The resulting voxel-wise beta-Wsidor the correct response predictor,
representing the average change in BOLD signahoih @oxel during correct response
mental rotation trials compared to rest, were tingraged across each ROI. This
procedure yielded a single mean trial-related #agtastimate for each participant and
ROI. For each ROI these values were then partitidnetraining group and used to

perform a two-tailed unpaired t-test.

Whole brain BOLD comparison of training groups. In a more exploratory
variant of the ROI-based BOLD comparison of tragngroups described above, we
performed a whole-brain gray-matter only BOLD congian using FSL’s permutation-
based randomise tool with 5000 permutations. Thg gratter mask used to restrict the
analysis was derived from FreeSurfer’'s gray magmentation of the MNI template
brain. The input data to randomise were the coresgonse beta-weight volumes
resulting from the first-level GLM analysis des@tbabove (one volume for each
participant). The design matrix supplied to randserdefined a single predictor that
differentiated between non-motoric and motoric ipgrants. T-contrasts were defined for
non-motoric > motoric and motoric > non-motoric.

ROI classification comparison of training groups. To assess whether patterns of
mental rotation-related activity differed betwebgr two training groups, we used a
procedure similar to that used in the ROI-based B@omparison described above to
compare the results of the ROI classification asedybetween the groups. In this case,

our inputs to the unpaired t-tests were the clesgibn results for each participant and
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ROI, specifically the Fisher&-transformed correlations between each particigant’
confusion matrix resulting from the four-way cldgsition and the model mental rotation

similarity structure.
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Ch. 5: Discussion

The preceding three chapters presented evidencththauman mental
workspace is supported by a fundamentally disteduteural network that spans cortical
and subcortical structures throughout the braire fEsults and implications of these
findings are summarized below, and the readerfésnex to the Discussion section of
each chapter for a more in depth treatment.

Study 1 (Ch. 2) found a network of bilateral regidhroughout the cortex and
subcortical regions that supports information siietd mental manipulations of visual
imagery. Time point by time point classificatioevealed that at least some of these
regions tracked the timecourse of the task thatqiyaants performed, showing an
evolving pattern of information processing fromunpepresentation through mental
operation to output mental representation. The odtwwitched between two
connectivity profiles depending on whether men¢presentations were maintained or
manipulated.

Study 2 (Ch. 3) found that information about thenponent processes underlying
the mental workspace is distributed fundamentallthe brain. All regions studied
supported information about both the mental repragi®ons held in visual working
memory and the mental operations used to manipthate representations, running
directly counter to dominant models of the neuesib of working memory such as that

proposed by Baddeley (7). Furthermore, informa#ibaut mental representations was
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shared in a common format between many regionsgdanse, bidirectional,
hierarchically organized patterns of informatioomil between regions supported
information about both mental representations aadtat manipulations. These results
provide strong evidence that the component prosasseliated by this network are
fundamentally distributed rather than being segesbto anatomical modules.

Study 3 (Ch. 4) found evidence that the mental wpake is implemented via a
domain general core network that dynamically rdsrexisting subnetworks for specific
tasks. Specifically, during mental rotation, widesga information sharing among and
between core mental workspace nodes and severatHnabated regions integrates the
motor network into a larger, transient and taskegfmenetwork. Processing in the nodes
of this network during mental rotation partiallysegnble processing involved in physical
rotations of the hand, suggesting that the mottwaork is recruited specifically to
simulate the rotation of mentally imagined stimadiif they are physical objects.
However, differences in motor network processingveen mental and manual rotation
also suggest that the motor network is subsumedina larger mental workspace
network to participate in purely mental phenomena.

A primary conclusion from these three studies & the investigation of high-
order mental phenomena requires a shift in focusydvom a currently dominant
paradigm that seeks to localize cognitive functitnparticular, fixed anatomical
substrates. Instead, the field should seek outlamdlop new methods and conceptual
models that explain how higher levels of functiooaanization in the brain might
emerge from and operate on top of the lower-o@@&gmatic, domain-specific,

anatomically-modular levels of processing that hewéar dominated the field’s inquiry.
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Note that anatomically modular and fundamentalgrdbuted modes of information
processing are not necessarily mutually exclusivieindamental insight into the nervous
system has been that conceptually similar functroag be implemented at multiple
levels of organization simultaneously. For instartlce cerebral cortex re-implements
many of the functions of the brain stem, but ab@scious level that allows for finer,
more flexible control over behavior. Likewise, itaaild not be inconceivable that even
within the cortex similar functions are implementadltiple times at different levels of
organization. In fact, a recent study by Siegel emitbagues (115) has found evidence
supporting the co-existence of both modular anttidiged processing. Their data
suggest that during initial stages of cortical gssing, information is generated by and
exists locally within anatomical modules. At lagtéages, however, this information
becomes distributed widely throughout the cortechdihat functional localization breaks
down. Thus, the development of methods to studythm as a distributed network may
complement, rather than replace, existing insigataed by traditional methods such as
lesion studies that have provided evidence foffahetional localization.

The studies presented in this thesis focused ondheal basis of the mental
workspace and on the manipulation of visual imaggscifically. Thus, several
guestions regarding the generality of the reseltsain open for further investigation. For
instance:

» Do other domains of processing in the mental waakspentail processes that are
as fundamentally distributed as visual imagery2itire study could compare
visual imagery to auditory or tactile imagery. Thedel proposed in this thesis

predicts that, much like the occipital cortex anaton network were integrated
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into a larger network for the spatial manipulataimental visual images,
auditory imagery would entail the integration ofoirmation from auditory cortex
into the same core network nodes. A test of thergxdf the distribution of
processing in the mental workspace would be whetiiermation specific to
auditory mental images occurs in visual cortex andisual imagery information
occurs in auditory cortex.

Is the fundamentally distributed processing rewetalethe present studies unique
to high-order cognitive functions such as thosthefmental workspace, or might
such processing occur much more generally in camgritOne possibility is that
the methods developed in this dissertation havealed a general property of
cortical activity to which previous methods wersénsitive. A future study could
investigate this possibility by using the presestimods to compare visually
imagined representations with physically perceistahuli. Do straightforward
visual perceptual processes such as object caragjon (56) also entail the
widespread sharing of information in the same nmegjias those studied here?
Are mental workspace-like abilities and/or the fanntally distributed neural
processes underlying them unique to humans (1192F&ure work could
investigate the extent to which chimpanzees orratba-human animals can
volitionally manipulate mental representations, alsd differences in the
functional and structural connectivity between spethat may underlie the
uniqueness of human cognition.

How do differences in the organization of the mewarkspace network account

for differences in cognitive style, such as thasgeyed by “visual” or
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“propositional” thinkers (129-132)? A future stuctyuld compare differences in
the sharing and distribution of visual and propose#l mental representations
between participants with either visual or proposil cognitive tendencies.

This thesis claims that the abilities studied Hierat the root of the human
imagination that enables creative abilities suchantific and artistic thought.
However, the link between the ability to mentallgmpulate imagery and
creative ability was not tested directly. Futunedsts could investigate whether
mental manipulation ability relates to creativig0f and whether information is
integrated between the regions revealed by thewcustudies and other networks
known to play a role in creative cognition (6, 1334).

Could the methods developed here be used to igatstine neural bases of other
complex cognitive processes such as intelligenég (8arning (50), development

(135), attention (103), language (2), art (6),arial cognition (136)?
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Appendix1:  Supplemental Tables

Table S2.1. Responsetimev. classification accuracy control analysisresults

To verify that our ROI classification results wera influenced by response time (RT) differencesvben
the construct parts and the deconstruct figure itiond, we performed a cross-subject correlaticalysis
for each ROI between classification accuracy andi®€rence as in ref. (137). In no ROl was there a
significant correlation between RT difference anduaacy (allp’s uncorrected). In fact, for our four
primary areas of interest there are non-significaverse correlations between the two, suggesting that, if

anything, larger reaction time differences wereaisged withlower classification accuracies.

ROI r p
OoCC -0.161 0.566
PPC -0.265 0.340
DLPFC -0.341 0.214
PCU -0.221 0.428
FEF -0.142 0.613
CERE | 0.00320 0.991
SEF -0.225 0.421
MFC 0.300 0.278
FO 0.230 0.411
MTL 0.267 0.335
PITC -0.305 0.268
THAL 0.347 0.205
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Table S2.2. ROI two-way classification results

Statistical results of two-way classification arsay in each ROt-tests are one-tailed, compared to 50%.

Peorr Values are false discovery rate corregie@lues Abbreviations: CP = construct parts; DF =

deconstruct figure; MP = maintain parts; MF = maintfigure. ROl abbreviations are as in Figure 2.2.

accuracy (%) t Peorr
ROI CPv.DF MPv MF CPv.DF MPvMF CPv.DF MPvMF CPv.DF MPv MF
OCC| 614 65.8 3.75 7.54| 1.07e-3 1.35¢-6 4.28e-3 3.2de-5
PPC| 61.5 65.4 4.25 562| 4.08e-4 3.16e-5 1.96e-3 2.5Be-4
DLPFC | 55.8 62.3 2.71 6.18| 8.52e-3 1.19¢-5 0.0205 1.4Be-4
PCU| 60.2 58.8 3.58 3.51| 1.51e-3 1.74¢-3 5.17e-3 5.2[le-3
FEF | 56.0 57.8 2.16 2.78| 0.0244 7.33e-3 0.0489 0.0[195
CERE | 56.5 51.5 2.38 0.505 0.0160 0.311 0.0350 0.393
SEF | 515 55.8 0.778 1.79 0.225 0.0471 0.300 0.0870
MFC | 50.6 55.7 0.283 4.36 0.391 3.28¢-4 0.446 1.9¢6e-3
FO | 49.2 53.7 | -0.345 1.56 0.632 0.0700 0.690  0.112
MTL | 48.3 53.6 | -0.577 1.28 0.718 0.110 0.744 0.166
PITC| 535 52.9 1.59 1.14| 0.0675 0.137 0.112 0.193
THAL | 47.9 51.1 | -0.864 -0.397 0.799 0.349 0.799 0.418

Table S2.3. Correlation-based classification results

Statistical results of correlation analyses betwbermodel similarity structure from Figure 2.3Blan

confusion matrices from four-way classificationeach ROI.

ROI r p Pcorr
ocCcC 0.970 6.48e-5 3.89%e-4
PPC 0.977 2.91e-5 3.49e-4
DLPFC 0.921 1.18e-3 2.82e-3
PCU 0.911 1.66e-3 3.33e-3
FEF 0.955 2.22e-4 6.66e-4
CERE 0.583 0.129 0.165
SEF 0.734 0.0381 0.0654
MFC 0.638 0.0887 0.133
FO 0.355 0.388 0.388
MTL 0.444 0.27 0.295
PITC 0.957 1.90e-4 6.66e-4
THAL -0.573 0.137 0.165
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Table S2.4. Peak correlation time analysisresults

Statistical results of linear contrast analysepeak correlation times from analysis shown in Feg2iA.

LC = linear contrast result. C1 = contrast 1 (inplif operation: -1, output: 2). C2 = contrastrib(it: -1,

operation: 1, output: Op-values for negative contrast results are not shown

LC F
ROI C1 c2 C1 c2 C1 c2
OCC| 5.65 1.90 178. 60.0| 5.19e-12 1.00e-7
PPC | 5.40 2.19 9.24 456| 5.82e-3 0.0435
DLPFC | 6.06 1.81 46.5 12.4| 7.5le-7 1.924-3
PCU| 4.81 2.93 48.9 54.4| 3.98e-7 1.66e-7
FEF| 3.66 2.27 0.343  0.396 0.564 0.53p
CERE | -1.46 1.31 | 0.0237 0.0574 - 0.813
SEF | -3.87 2.19 1080.. 1030 - <le-12
MFC| -6.69 -0.381| 0.894 8.68e{3 -
FO| 3.36 -1.13 | 0.156 0.0532  0.697 -
MTL | 3.14  0.136 7.70 0.0432 0.0111  0.837
PITC| -2.84 1.27 9.22 5.54 - 0.028D
THAL | -5.76  -2.01 3.79 1.38 -
Table S3.1. Behavioral results
Mean number of correct trials per condition acrlssubjects.

Shape Mean SE.M. Operation Mean SEM
I 57.2 (95.3%) 0.642 c 57.5 (95.8%) 0.393
'|' 58.4 (97.3%) 0.520 K_) 57.8 (96.3%) 0.308
> 56.6 (94.3%)  0.578 - 57.4 (95.7%)  0.698
\. 57.5 (95.8%) 0.579 t 57.0 (95.0%) 0.757
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Table S3.2. ROI control analysis results

Control ROI classification analyses with thalamaod aentricle masksz: Mean of jackknifed Fishera-

transformed correlations between the classificatimmfusion matrices and the model similarity stuoes

from Figure 3.1t(18): Statistical results of one-tailed t-tests onjdekknifed Fisher'&Z-transformed

correlations, compared to ze.p-values from the t-tests.

Representation Manipulation
ROI z t(18) p z t(18) p
THALAMUS| 0.516 1.000 0.165 -0.607 -2.79 0.994
VENTRICLE | 0.270 0.620 0.271 -0.133 -0.450 0.671

Table S3.3. Shuffled-label control classification results

z Mean of jackknifed Fisher’&-transformed correlations between the classificationfusion matrices

and the model similarity structures from Figure. 3(18): Statistical results of one-tailed t-tests on the

jackknifed Fisher'eZ-transformed correlations, compared to zerg-values from the t-tests.

Representation Manipulation

ROI z t(18) p z t(18) p
all | -0.275| -0.917| 0.814] -0.226 -0.836  0.7¢
OCC| -0.200 | -0.592| 0.719| -0.740 -34 0.99
PPC| -0.132 | -0.682| 0.748, -0.014 -0.044 0.51
PCU | 0.148 0.519 0.305, -0.645 -3.0 0.99
LOC | 0.293 0.962 0.174| -0.616 -1.7 0.95
FEF | -0.342 | -1.21 0.880| -0.256  -1.2 0.87
DLPFC | -0.472 | -1.19 0.875 0.185 0.45 0.32

N O woNOw



Table S3.4. Shuffled-label control cross-classification results

z Mean of jackknifed Fisher’&-transformed correlations between the classificationfusion matrices

and the model similarity structures from Figure. 8(18): Statistical results of one-tailed t-tests on the

jackknifed Fisher'eZ-transformed correlations, compared to zerg-values from the t-testpe,: False

discovery rate corrected p-values across the 3@adsons.

Representation Manipulation
ROI1 ROI2 z t(18) P Pcorr 4 t(18) P Pcorr
DLPFC FEF | 0.309| 1.285 0.107 0.4083 0.404 2.1p8 0.025 O
DLPFC OCC | -0.106| -0.391| 0.650 | 0.843| -0.045-0.165| 0.565| 0.814
DLPFC PCU | -0.068| -0.494| 0.687 | 0.843| 0.097 0.710 0.243 0.8
DLPFC LOC | 0.258 | 1.863] 0.039 0.4083 0.037 0.185 0428 0
DLPFC PPC | -0.292| -1.595| 0.936 | 0.962| -0.166-0.744| 0.767 | 0.822
FEF OCC| 0.000| 0.001| 0.500 0.83s 0.011 0.080 0469 O
FEF PCU | 0.368| 1.645] 0.059 0.4083 0.065 0.332 0.372 O
FEF LOC | 0.243| 1.002, 0.165 0.494 -0.0650.472| 0.679| 0.814
FEF PPC | -0.001| -0.004| 0.501| 0.836| -0.048-0.259| 0.601 | 0.814
OCC PCU | -0.526| -1.876| 0.962 | 0.962| -0.124-0.550| 0.705| 0.814
OCC LOC | 0.277| 1.411, 0.088 0.4083 -0.0160.032| 0.513| 0.814
OCC PPC | -0.050| -0.235| 0.591| 0.843| -0.366-1.208| 0.879 | 0.879
PCU LOC | 0.208 | 0.594| 0.280 0.700 0.100 0.382 0.353 O
PCU PPC | 0.055| 0.264| 0.397 0.836 -0.0270.189| 0.574| 0.814
LOC PPC | -0.133| -0.626| 0.730| 0.843| -0.099-0.472| 0.679| 0.814
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Table S3.5. shuffled-label control infor mation flow classification results

z Mean of jackknifed Fisher’&-transformed correlations between the classificationfusion matrices

and the model similarity structures from Figure. 8(18): Statistical results of one-tailed t-tests on the

jackknifed Fisher'eZ-transformed correlations, compared to zerg-values from the t-testpe,: False

discovery rate correctq@values across the 60 comparisons.

Representation Manipulation
ROI1 ROI2 z t(18) p Pcorr Z t(18) p Peorr
DLPFC FEF | 0.128| 0.378| 0.355| 1.000| -0.445| -1.370| 0.906| 1.000
DLPFC OCC| 0.242| 0.531| 0.301| 1.000| -0.216| -1.106| 0.858| 1.000
DLPFC PCU | -0.198| -0.758| 0.771| 1.000| 0.377| 1.038| 0.157| 1.000
DLPFC LOC| 0.556| 2.308| 0.017| 0.331| 0.550| 1.490| 0.077|0.921
DLPFC PPC | -0.289| -0.813| 0.787| 1.000| -0.439| -1.651| 0.942| 1.000
FEF | DLPFC| 0.002| 0.005| 0.498| 1.000| -0.026| -0.065| 0.526/| 1.000
FEF OCC | -0.168| -1.073| 0.851| 1.000| -0.412| -1.144| 0.866| 1.000
FEF PCU | -0.179| -0.541| 0.702| 1.000| -0.192| -0.546| 0.704| 1.000
FEF LOC | -0.143| -0.45| 0.671| 1.000| 0.158| 0.540| 0.298| 1.000
FEF PPC | 0.244| 0.816| 0.213| 1.000| -0.560| -2.090| 0.974| 1.000
OCC | DLPFC | -0.461| -1.476| 0.921| 1.000| 0.235| 0.698| 0.247| 1.000
OCC FEF | -0.226| -0.669| 0.744| 1.000| 0.241| 0.491| 0.315| 1.000
OCC PCU | 0.287| 0.825| 0.21| 1.000| 0.879| 3.742| 0.001| 0.045
OCC LOC | -0.118| -0.401| 0.654| 1.000| -0.549| -1.658| 0.943| 1.000
OCC PPC| 0.178| 0.437| 0.333| 1.000| -0.251| -1.082| 0.853| 1.000
PCU | DLPFC | .0.162| -0.582| 0.716| 1.000| 0.136| 0.482| 0.318| 1.000
PCU FEF | -0.117| -0.233| 0.591| 1.000| -0.261| -1.372| 0.907| 1.000
PCU OCC | 0.189| 0.720| 0.240| 1.000| 0.418| 1.819| 0.043| 0.642
PCU LOC | 0.717| 2.602| 0.009| 0.270| 0.301| 0.945| 0.178| 1.000
PCU PPC | -0.038| -0.140| 0.555| 1.000| -0.564| -1.585| 0.935| 1.000
LOC | DLPFC | -0.040| -0.125| 0.549| 1.000| -0.791| -3.860| 0.999| 1.000
LOC FEF | 0.028| 0.100| 0.461| 1.000| -0.559| -2.976| 0.996| 1.000
LOC OCC | -0.320] -1.243| 0.885| 1.000| -0.473| -1.801| 0.956/| 1.000
LOC PCU | -0.471| -1.832| 0.958| 1.000| -0.541| -2.509| 0.989| 1.000
LOC PPC | -0.025| -0.074| 0.529| 1.000| -0.422| -1.557| 0.932| 1.000
PPC | DLPFC | -.0.021| -0.066| 0.526| 1.000| -0.953| -4.081| 1.000| 1.000
PPC FEF | 0.146| 0.374| 0.356| 1.000| -0.124| -0.802| 0.783| 1.000
PPC OCC | 0.154| 0.457| 0.326| 1.000| -0.394| -1.285| 0.892| 1.000
PPC PCU | -0.073| -0.263| 0.602| 1.000| -0.283| -0.798| 0.782| 1.000
PPC LOC| 0.301| 1.092| 0.145| 1.000| -0.359| -1.592| 0.936/| 1.000

97




Table $4.1. Behavioral results

Mean number of correct trials per condition acrlssubjects.

Rotation M ean SE.M. % Correct
| WD) 34.2 0.909 85.5
QO 35.2 1.04 87.9

O 36. 0.689 90.
o 36.3 0.509 90.7

Table $4.2. Comparison of univariate activity between training groups

Comparison of ROI-based univariate mental rotatiglated activity between training groups. For each

ROI, a two-tailed, unpaired t-test compared thenreaivity level between the two groups. See Figuge

for abbreviationsf: GLM beta-weight representing mean mental rotatelated change in brain activity

in the specified ROIS.E.M .: standard error of the mean of the beta-weightssagarticipantg.,: FDR-

correctedp-values across the 13 ROIs.

non-motoric group motoric group unpaired t-test

ROI B SE.M. B SE.M. t(22) P Peorr
CERE | 11.7 3.64 12.0 4.83 -0.0548 0.957 0.957
PS| 19.8 5.13 12.0 6.52 0.937 0.359 0.916
PM 29.5 3.70 27.5 5.89 0.290 0.77% 0.916
preMd 11.9 7.97 13.6 8.26 -0.147 0.88% 0.95¢7
preMv | -0.224 4.85 16.5 10.3 -1.47 0.156 0.916
SMA| 305 4.99 22.0 7.30 0.951 0.352 0.916
preSMA | -9.79 4.36 -2.72 7.57 -0.80¢9 0.427 0.916
OCC| 48.6 3.63 54.6 8.34 -0.654 0.520 0.916
LOC| 26.3 9.16 20.5 8.39 0.465 0.646 0.916
PCU 38.5 10.3 52.4 16.0 -0.729 0.474 0.916
PPC| 48.2 6.34 42.0 7.12 0.658 0.518 0.916
FEF | 31.2 5.63 27.9 6.83 0.373 0.713 0.916
DLPFC| 22.2 4.44 19.0 5.94 0.433 0.669 0.916
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Table $4.3. Comparison of ROI classification between training groups

For each ROI, a two-tailed, unpaired t-test comgbaine classification results between the two groGes

Figure 4.2 for abbreviationg. mean jackknifed FisherZ-transformed correlation between the

classification confusion matrices and the modellanity structure from Figure 4.1E5.E.M.: standard

error of the mean of thé-transformed correlations across participapis,: FDR-correcteg-values across

the 13 ROIs.
non-motoric group motoric group unpaired t-test

ROI z SE.M. z SE.M. t(22) p Peorr
CERE | 0.429 0.110 0.270 0.102 1.06 0.300 0.885
PS| 0.300 0.079 0.482 0.122 -1.25 0.224 0.885
PM | 0.944 0.145 0.764 0.143 0.881 0.388 0.885
preMd | 0.561 0.100 0.405 0.132 0.944 0.35p 0.885
preMv | 0.338 0.110 0.613 0.0724 -2.09 0.0489 0.635
SMA | 0.639 0.120 0.518 0.156 0.616 0.544 0.885
preSMA | 0.393 0.0662 0.391 0.188 0.0127 0.990 0.990
OCC| 0.758 0.0972 0.725 0.0751 0.266 0.793 0.990
LOC| 0.221 0.103 0.211 0.102 0.067p 0.94j7 0.990
PCU | 0.645 0.119 0.662 0.146 -0.0921 0.927 0.990
PPC | 0.687 0.143 0.788 0.0667 -0.644 0.526 0.885
FEF | 0.426 0.132 0.560 0.0932 -0.827 0.41)7 0.885
DLPFC| 0.584 0.109 0.658 0.109 -0.478 0.63[7 0.921
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Table $4.4. Comparison of ROI cross-classification between training groups

For each significant pair of ROIs in the analysisgented in Figure 4.3, a two-tailed, unpairedt-te

compared the cross-classification results betwkeernvwo groups. See Figure 4.2 for abbreviatiansean

jackknifed Fisher'Z-transformed correlation between the cross-clasgitin confusion matrices and the

model similarity structure from Figure 4.18.E.M.: standard error of the mean of théransformed

correlations across participangs,,: FDR-correcteg-values across the 33 significant ROI pairs.

non-motoric group | motoric group unpaired t-test
ROI'1| ROI 2 z SE.M. z SEM. | t(22) p Peorr
CERE SVA | 0.131 0.0596 0.203] 0.0706 -0.780 0.444 0.829
CERE PCU | 0.00383| 0.0560 0.138| 0.0606 -1.62 0.119 0.576
PS| preMd| 0.0768 | 0.0461 0.131] 0.0666 -0.666 0.513 0.8P29
PS FEF | 0.0639 | 0.0416 0.186] 0.0679 -1.58 0.140 0.5Y6
PS| DLPFC | 0.0508 | 0.0434 0.127, 0.0648 -0.9Y9 0.338 0.798
PM | preMd | 0.187 0.0804 0.183] 0.0536 0.0460.963 | 0.963
PM PCU | 0.114 0.0711 0.199| 0.0735 -0.834 0.413 0.829
PM PPC | 0.130 0.0326 0.175| 0.0728 -0.557 0.583 0.887
PM FEF | 0.207 0.0481 0.261] 0.0679 -0.642 0.527 0.829
PM | DLPFC | 0.135 0.0565 0.162] 0.0661 -0.310 0.759 0.921
preMd | preMv | 0.0975 | 0.0469 0.229 0.0821 -1.39 0.179 0.588
preMd SMVA | 0.167 0.0570 0.051[70.0656 1.33 0.197| 0.588
preMd LOC | 0.115 0.0484 0.085B0.0627 0.372| 0.713] 0.910
preMd PCU | 0.0753 | 0.0501 0.227, 0.0463 -2.283 0.0362 0.5[6
preMd PPC | 0.126 0.0500 0.220| 0.0528 -1.28 0.214 0.588
preMd FEF | 0.141 0.0652 0.190| 0.0544 -0.576 0.570 0.887
preMd | DLPFC | 0.146 0.0318 0.135 0.0579 0.174 0.863 0.946
preMv SVIA | 0.131 0.0550 0.168] 0.0723 -041 0.686 0.910
preMv FEF | 0.0901 | 0.0451 0.261] 0.0833 -1.80 0.0855 0.5[6
preMv | DLPFC | 0.101 0.0366 0.336] 0.0826 -2.60 0.0164 0.543
SVIA PPC | 0.160 0.0496 0.154/ 0.0619 0.074 0.942 0.963
SVIA FEF | 0.0715 | 0.0740 0.145 0.0505 -0.818 0.422 0.8PR9
SMA | DLPFC | 0.142 0.0568 0.210; 0.0716 -0.749 0.462 0.829
preSMA FEF | 0.0865 | 0.0498 0.141) 0.0648 -0.668 0.511 0.8P9
preSMA | DLPFC | 0.163 0.0677 0.134| 0.0412 0.367 0.717 0.910
OCC PCU | 0.103 0.0596 0.125| 0.0870 -0.208 0.837 0.946
OCC PPC | 0.0642 | 0.0281 0.207] 0.0836 -1.62 0.119 0.576
LOC PPC | 0.0777 | 0.0387 0.205] 0.0836 -1.38 0.181 0.588
PCU PPC | 0.142 0.0537 0.119] 0.0631 0.281 0.782 0.921
PCU FEF | 0.125 0.0630 0.110 0.0840 0.142 0.889 0.946
PPC FEF | 0.0839 | 0.0595 0.180, 0.0699 -1.05 0.307 0.779
PPC | DLPFC | 0.0851 | 0.0648 0.258 0.0558 -2.02  0.0853 0.5[6
FEF | DLPFC | 0.126 0.0422 0.233] 0.0525 -1.59 0.127 0.576
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Table $4.5. Comparison of mental/manual cross-classification between training groups

For each significant ROI in the analysis presemdeigure 4.4, a two-tailed, unpaired t-test coneplathe

cross-classification results between the two gro8pe Figure 4.2 for abbreviatiomsmean jackknifed

Fisher'sZ-transformed correlation between the cross-clasgifin confusion matrices and the model

similarity structure from Figure 4.1B.E.M.: standard error of the mean of théransformed correlations

across participantpe,: FDR-correcteg-values across the 5 significant ROIs.

non-motoric group motoric group unpaired t-test
ROI z SE.M. z SE.M. t(22) p Peorr
PM | 0.174 0.0721 0.150 0.0660 0.241 0.811 0.811
preMv | -0.0690 | 0.0519 0.0953 0.0495 -2.29 0.0319 0.160
OCC | 0.117 0.0836 0.167 0.0619 -0.487 0.631 0.789
PCU | 0.159 0.0824 0.0843 0.0820 0.643 0.527 0.789
PPC | 0.159 0.116 0.279 0.0527 -0.945 0.355 0.789
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Appendix I1:  Supplemental Figures

Figure S2.1. ROl -classification to control for ROI size

A. Classification results using the same A 75

| 5 I anipulate B remember
. . . . —_— * x
procedure as described in Figure 2.3, with 265 | T
I : : gl p
two modifications. First, to verify thatthe @ ¢ |
=3

3 50
inability to classify between conditionsin < !

SEF, FO, MTL, and THAL was notdue to ~ *°

ROl size, the union of these ROIs was

e B
constructed and the classification l ocCH#+

ROIs did not depend on ROI size, we
constructed new ROIs by eroding each
original ROI until it consisted of the same [ANEFS

MFC
number of voxels as the smallest of the

29
eight ROIs (127 voxels on average acrossi e

subjects). B. Confusion matrices and 23 25 X
correlation analysis results as in Figure 30 23 e 22

but using the ROIs described above.
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PROMPT (2-s)

BLANK (6-s)

TEST (2-s)

FEEDBACK (2-s)

Figure S3.1. Trial schematic

A 2s prompt screen indicated the shape and oparfatiche current trial. This was followed by at8ank
screen during which the participant performed titédated operation on the indicated shape. Ne2s, a
test screen appeared, during which the participalitated whether a displayed shape matched thgibut

of the indicated operation. Finally, the participams given feedback on their response.
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Figure S3.2. Visual schematic of cross-classification analysis procedure

A. Functional data from each ROI (PPC A

shown here) were transformed from voxel
space to 50 principal component signals usi /
PCA.B. For a single cross-classification

analysis between two ROIs (PPC and PCU

here), the correlation distance between each

pair of principal component signals was
calculated. This calculation was performed
independently for each classification fold, ¢
leaving out the test data from that fold
(visualized here as a gap in the data that was E 1
used to calculate distances). This resulted in a

50 x 50 correlation distance matr. The

order to compute a matching of component

ST L R T N S PV
signals between the two ROIs that maximized e
their pairwise similarity (i.e. minimized their

E .
correlation distancep. This procedure train( PPC) test(PCU)

1.2
resulted in a common 50-dimensional feature

*
0ok
space shared between the two ROIs. Matched
o6k
principal component signals between ROIs
03f
were maximally similar to each othé&t. A *

0

Fisher's z(r)

representation manipulation

cross-classification analysis was performed osl
using these transformed functional data. The dlassvas trained on data from one ROI (PPC in tiaise)
and tested on data from the other ROl (PCU indase). Other than the difference between trainmly a

testing data, the classification was carried oentitally to that of the ROI-based analyses in Fégai2.
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Figure S3.3. Visual schematic of information flow classification analysis procedure

A. Functional data from each ROI (PBfbwn hereA

were transformed from voxel space to 10 principC LS
component signals using PCB. For a given
directed ROI pair (PPC to PCU here) and conditg

(Shape 1 and clockwise rotation here), the Gran/{*@
N \ S

NS~

causality from the source ROI to the destinatRi
was calculated for each pair of principal compon
signals (PPC component 1 and PCU component
here), using only data from trials of that conditio
C. This resulted in a 10 x 10 Granger-causal gre
for each participant, directed ROI pair, and
condition.D. The resulting 16 Granger-causal

graphs for a given participant and directed ROI |

could be labeled based on either shape or opere
E. A classification analysis then proceeded asén
other analyses, except that either leave-one-sha
out or leave-one-operation-out cross validation v

performed.

representation manipulation
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B B Bk
e b o

Figure $4.1. The eight figures used for mental rotation
Figures were shown during the prompt phase ofrthkeeither as above or flipped across the y-aais]

unrotated, rotated 180° around the x-axis, or eotdi80° around the z-axis.
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I. CERE

25 il 25 23

24 25 K
22 23 22 gl

Il. PS . PM locc BlLoc
ISh 25 22 21 QEZ3 27| 18 16 QYA 26 18
25 Kl 24 23
24 23 Kl 25

IV. preMd V. preMv
26 21 21

£ 21 21

28 30 prawx
23 22 r4 26

VI. SMA VII. preSMA [l FEF
Al 25 22 23
26 Kl 24 22

23 20 k2 26
20 20 [26 [eX]

Figure $4.2. Individual mean confusion matrices from the ROI classification analysis

Compare to model similarity structure in Figure M&lues represent percent of cross-validation foids
which each target/prediction combination occur@alor scaling for visualization was performed
separately for each confusion matrix, because @iditive values matter for the correlation analysis

Matrix elements are ordered as in Figure 1B, arfmealiations are as in Figure 2.
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