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 The brain is a vastly interconnected information processing network. In 

humans, this network supports the rich mental space at the root of the imagination and 

enables many flexible cognitive abilities such as scientific and artistic creativity. How the 

brain implements these creative processes remains one of the greatest mysteries in 

science, and solving this mystery carries with it a possibility for deep understanding of 

human nature, human potential, and machine intelligence. Logie has proposed that a key 

substrate for human cognition is a “mental workspace” that enables mental 

representations such as visual imagery to be formed and manipulated flexibly (1). 

However, the neural basis of this workspace remains poorly understood, partially because 

existing experimental methods have limited ability to study complex, higher-order mental 

functions. Here we develop new methods to probe the structure and dynamics of the large 

scale networks underlying complex cognition. We use these methods to show that the 

mental manipulation of visual imagery is mediated by a fundamentally distributed 

network that spans structures throughout the human brain. Our findings conflict with 

dominant models that posit an anatomically modular basis for working memory and 

related processes. Instead, the component processes underlying the mental workspace 

appear to transcend anatomical modules, occurring at a level of organization that is 

fundamentally distributed across the brain. Rather than having a fixed anatomical basis, 

the mental workspace appears to be mediated by a core network that can dynamically and 

flexibly recruit existing cortical and subcortical subnetworks for specific tasks. These 

findings call for a shift in cognitive neuroscience research away from functional 

localization and localized neural circuits and toward the study of organizational 

principles that govern the large scale integration of information processing in the brain. 

Abstract. 
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Ch. 1: Introduction 

A hallmark of human cognition is the ability to create flexible mental 

representations through conscious effort. Such abilities have been studied via several 

psychological constructs including working memory (7), mental imagery (8), visuospatial 

ability (9), mental models (10), analogical reasoning (11), and the mental workspace (1). 

The ability to work flexibly with mental representations underlies much of human life 

from mundane tasks such as planning seating arrangements at family get-togethers to our 

species’ greatest artistic and scientific achievements. For instance, Albert Einstein wrote 

that his scientific thought process consisted primarily of “certain signs and more or less 

clear images which can be 'voluntarily' reproduced and combined” (12). In contrast, 

chimpanzees, our closest living evolutionary relative, appear to lack fundamental aspects 

of our flexible cognitive machinery such as symbolic thought (13) and imagination (14, 

15). How has the human brain enabled these extraordinary abilities? 

In a seminal experiment on the mental manipulation of visual imagery, Shepard 

and Metzler (1971) had participants mentally rotate three-dimensional objects to 

determine whether they were the same as other similar three-dimensional objects (see 

Figure S4.1 for example stimuli). Participants’ reaction times correlated strongly with the 

angle of rotation necessary to align the two objects, suggesting that they had mentally 

rotated an internal model in much the same way as one would rotate a physical object. 

Subsequent behavioral research explored other operations such as mental paper folding 
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(17), the generation and analysis of mental analog clocks (18), and mental simulations of 

mechanical systems (10), a primary result being that mental operations resemble the 

corresponding physical ones. Other work has documented similar processes in domains 

such as mental time travel (19), creative synthesis of mental imagery (20), and 

visuospatial reasoning (21). Thus, the human brain appears to support a mental space 

similar to the physical world in which mental representations can be constructed, 

manipulated, and tested in a flexible manner. Following Logie (1), I will refer to this 

cognitive system as the mental workspace. 

A dominant model of the architecture of the mental workspace is Baddeley’s 

conception of working memory (7, 22), in which a central executive system controls the 

maintenance and manipulation of representations in subsystems such as the visuospatial 

sketchpad (for visual representations) or the phonological loop (for verbal/auditory 

representations). Working memory is often treated as a cognitive system responsible for 

maintaining mental representations of limited size for short periods of time. Canonical 

tests of working memory capacity such as the n-back and memory span tasks (23–25) 

reflect this viewpoint: In general, participants must hold a variable number of items 

online (numbers, letters, words, images, etc.) for some amount of time, often 

accompanied by competing distractor stimuli. Working memory abilities are closely 

linked to control of attention (26) and intelligence (27). Recent work has established that 

working memory capacity can be improved with training and that this improvement can 

transfer to other abilities such as fluid intelligence (28–31). 

While behavioral work on the mental workspace is well established, relatively 

little is understood about the neural mechanisms that make it possible. Neuroimaging 
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studies have implicated widely-distributed regions of the cortex in working memory (28, 

32), with both lateral-frontal and parietal cortical activity commonly co-occurring in 

working memory tasks. This fronto-parietal coupling has been proposed as the core of a 

network that mediates many higher order mental functions (33–36). According to several 

models, this network consists of a frontal executive system that directs attention over 

contents located in parietal and surrounding modality-specific regions (7, 37–41). 

Supporting this view, Harrison and Tong (42) could decode the contents of visual 

working memory in early visual areas, and Oh and colleagues (43) found that auditory 

imagery recruits frequency-specific regions of auditory cortex. In a meta-analysis of 

neuroimaging studies of mental rotation, Zacks (2008) found that regions throughout the 

cortex and cerebellum were involved but that many studies placed at least part of the 

machinery of mental rotation in the intraparietal sulcus and adjacent regions along with 

the medial superior precentral cortex. Zacks suggested that parietal regions maintain 

representations of the objects being rotated and that precentral motor cortex executes the 

motor simulations. 

However, empirical support for such anatomically-modular models of the mental 

workspace derives in many cases from a failure to find (or look for) relevant information 

in regions outside those proposed by such models (7, 38, 40, 44, 45). Other models and 

mounting empirical evidence derived from new, network- and information-based 

analytical techniques paint a more complex picture, suggesting that many high-level 

cognitive processes occur at a level of organization that transcends any single neural 

structure (46–51). These recent advances suggest that processing in the brain may be 

much more distributed in nature than suspected previously. Therefore, one hypothesis of 
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the studies presented in this thesis is that the mental workspace emerges out of the 

distribution and sharing of informational processes throughout the cortex. However, this 

emergent organization would only become apparent if studied using analytical methods 

that are sensitive to informational connections between widely distributed network nodes. 

A model of the brain as fundamentally distributed is not new: Rumelhart’s and 

McClelland’s (48) Parallel Distributed Processing proposal gained wide interest in the 

late 1980s and sparked a revolution in artificial intelligence based on neural networks and 

connectionist models of cognition. However, evaluating this model empirically has been 

severely limited by technical limitations in the measurement and analysis of brain 

activity. While functional magnetic resonance imaging (fMRI) enables the indirect 

measure of neural activity over the entire brain, interpreting fMRI data in a connectionist 

framework requires methods that have only recently begun to gain a foothold in the 

neuroimaging community. Early fMRI research was dominated by univariate analyses 

that limited inference to isolated voxels and encouraged efforts to localize function to 

such a degree that the field’s early work has been termed “neo-phrenology” (52). When 

multivariate pattern analysis (MVPA) and related techniques such as representational 

similarity analysis (RSA) were introduced, they drove the field to reframe questions in 

terms of the informational roles and relationships of and between networks of brain 

regions (53–56). A parallel line of methodological research has sought to use existing 

ideas in network analysis to characterize the large-scale network structure of the brain 

(46, 49, 57). Recent advances in the analysis of structural and functional connectivity 

have allowed both undirected (58, 59) and directed (60, 61) relationships between 

widespread cortical and subcortical regions to be investigated. These methods have set 
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the stage for a new approach to the brain as a densely interconnected, fundamentally 

distributed information processing network. 

The studies in this thesis build on the above techniques to investigate the neural 

architecture of the mental workspace. In order to study the mental workspace as a 

distributed network, a combination of existing and novel methods is used. In particular, 

we develop and exploit new methods in the following areas: 

•••• Relating classifier confusion to task structure. Multivariate classification techniques 

usually rely on classification accuracy—the degree to which a machine classifier can 

distinguish between experimental conditions above chance levels— as the measure of 

classifier performance (62). While this measure allows the investigator to probe 

whether brain activity supports information that distinguishes between experimental 

conditions, its interpretation can be uncertain or misleading when potential 

differences between conditions exist in addition to the difference of interest. For 

instance, differences in difficulty or attentional demands between two tasks could 

result in above chance classification accuracy, but failing to account for this 

possibility could lead the investigator to conclude that the successful classification 

was due to the designed contrast between conditions. However, classification 

analyses also yield confusion matrices that record the particular patterns of confusion 

between conditions. In designs with more than two conditions, these confusion 

matrices can be compared to the expected pattern of confusion that would occur due 

to the structure of informational relationships between conditions. Significant 

correlation between the confusion matrices and the expected or model similarity 

structure between conditions can potentially provide evidence for task-specific 
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evidence that goes beyond potential confounding factors such as difficulty or 

attention. Each of the three studies presented in this thesis use this technique in order 

to provide robust evidence for task-specific processing in the investigated regions of 

interest. 

•••• Shared vs. distinct informational formats. Multivariate techniques have revealed that 

information pertaining to many cognitive processes is distributed widely in the cortex 

(45, 63, 64). However, current techniques do not distinguish whether this information 

occurs in a common or distinct format between network nodes. This is an important 

distinction, since anatomically modular theories of the mental workspace rely in part 

on information being distributed yet specialized throughout the cortex (40). Study 2 

(Ch. 3) develops a novel method to investigate the relationship between the 

informational formats of network nodes. 

•••• Patterns of information flow. Understanding the flow of information between a 

network’s nodes is necessary in order to understand how that network functions. 

Existing methods for assessing directed information flow are concerned primarily 

with quantifying the degree to which processing in one region influences later 

processing in another region (60, 61). In this sense, these methods are similar to 

univariate analyses in that they can detect increases or decreases in directed 

connectivity, but are insensitive to information that may be carried via connectivity 

patterns. In this dissertation we are not concerned directly with whether information 

flows between nodes, since in a densely connected, distributed network each node 

will likely exert some degree of control over all other nodes. Rather, we are interested 

in whether patterns of information flow between underlying processes that are 
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distributed among these nodes are informative about mental workspace functions. 

Study 2 develops a novel method to investigate the information carried by patterns of 

information flow between network nodes. 

 

The following chapters present the results of three studies that investigate the 

distributed neural network underlying the mental workspace, focusing specifically on 

visual imagery because of its extensive existing literature. Study 1 (Ch. 2) investigates 

the structure and dynamics of the neural network that supports the mental manipulation 

of visual imagery. Study 2 (Ch. 3) investigates the distribution and flow of information in 

this network that supports the representation and manipulation of visual imagery. Study 3 

(Ch. 4) uses mental rotation as a case study to investigate how the mental workspace 

recruits specialized subnetworks for specific functions. 
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Ch. 2: Network structure and dynamics of the mental workspace1 

Abstract. The conscious manipulation of mental representations is central to many 

creative and uniquely human abilities. How does the human brain mediate such flexible 

mental operations? Here, multivariate pattern analysis of functional magnetic resonance 

imaging data reveals a widespread neural network that performs specific mental 

manipulations on the contents of visual imagery. Evolving patterns of neural activity 

within this mental workspace track the sequence of informational transformations carried 

out by these manipulations. The network switches between distinct connectivity profiles 

as representations are maintained or manipulated. 

                                                 
1 This chapter was originally published as ref. (95). 
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Introduction 

Albert Einstein described the elements of his scientific thought as “certain signs 

and more or less clear images which can be ‘voluntarily’ reproduced or combined” (12). 

Creative thought in science as well as in other domains such as the visual arts, 

mathematics, music, and dance requires the capacity to flexibly manipulate mental 

representations. Cognitive scientists refer to this capacity as a “mental workspace” and 

suggest that it is a key function of consciousness (65) involving the distribution of 

information among widespread, specialized subdomains (66). 

How does the human brain mediate these flexible mental operations? Behavioral 

studies of the mental workspace, such as Shepard and Metzler’s work on mental rotation 

(16), have found that many mental operations closely resemble their corresponding 

physical operations. This supports the view that the mental workspace can simulate the 

physical world. Recent work in neuroscience has focused on mental representations 

instead of operations, showing that the contents of visual perception (53), visual imagery 

(42), and even dreams (67) can be decoded from activity in visual cortex. These results 

suggest that the same regions that mediate representations in sensory perception are also 

involved in mental imagery. Yet, how the mind can manipulate these representations 

remains unknown. Many studies have found increased activity in frontal and parietal 

regions associated with a range of high-level cognitive abilities (68, 69) including mental 

rotation (33), analogical reasoning (34), working memory (35), and fluid intelligence 

(36). Together, these findings suggest that a frontoparietal network may form the core of 

the mental workspace. We therefore hypothesized that operations on visual 

representations in the mental workspace are realized through the coordinated activity of a 
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distributed network of regions that spans at least frontal, parietal, and occipital cortices. A 

strong test of this hypothesis would be to ask whether patterns of neural activity in these 

regions contain information about specific mental operations and whether these patterns 

evolve over time as mental representations are manipulated. 

Figure 2.1. Experimental design 

A. Parts could be 

constructed into 2 × 2 

figures and figures 

deconstructed into 

parts. B. Participants 

performed four mental 

operations on stimuli: 

construct parts into 

figure, deconstruct 

figure into parts, 

maintain parts, or 

maintain figure. C. The stimulus set of 100 abstract parts, ordered from simple to complex. D. Example 

figures. Parts and figures ranged from simple to complex according to an index d. This allowed the task 

difficulty to be equated across conditions. E. Trial schematic. Trials begin with a figure and four unrelated 

parts presented for 2s, followed by a task prompt for 1s consisting of an arrow indicating the figure or the 

parts and a letter indicating the task. In this case, the participant is instructed to maintain the figure in 

memory. The task prompt is followed by a 5s delay period during which no stimulus is shown and the 

participant performs the indicated operation. Finally, a test screen appears for 2.5s. Either four figures or 

four sets of parts (depending on the task) are presented, and the participant indicates the correct output of 

the operation. 
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In the present study, we tested this hypothesis by asking 15 participants to engage 

in either maintenance or manipulation of visual imagery while we collected functional 

magnetic resonance imaging (fMRI) measurements of their neural activity. As stimuli, 

we developed 100 abstract parts that could be combined into 2 × 2 figures (Figure 2.1A 

& C). In a series of trials, participants mentally maintained a set of parts or a whole 

figure, mentally constructed a set of four parts into a figure, or mentally deconstructed a 

figure into its four parts (Figure 2.1B). Stimuli were presented briefly at the beginning of 

each trial, followed by a task prompt and a 6s delay during which the participant 

performed the indicated mental operation. At the end of the delay, the target output of the 

operation was presented along with three similar distractors, and the participant indicated 

the correct target (Figure 2.1D). Adjusting the complexity of the stimuli allowed us to 

equate for task difficulty by maintaining 2/3 accuracy for each participant in each of the 

four conditions (chance would be 1/4 correct; Figure 2.1E). 

 

Results 

As an initial region of interest (ROI) selection procedure on the fMRI blood-

oxygenation-level-dependent (BOLD) data, we carried out a whole brain univariate 

general linear model (GLM) analysis to identify regions in which neural activity levels 

differed between mental manipulation (construct parts or deconstruct figure) and mental 

maintenance (maintain parts or maintain figure) conditions. This analysis revealed 11 

bilateral cortical and subcortical ROIs (Figure 2.2), suggesting that a widespread network 

mediated the manipulation tasks. All but two of the ROIs (medial temporal lobe and 

medial frontal cortex) showed greater activation in manipulation than in maintenance 
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conditions. In a separate control GLM analysis, we evaluated whether any regions 

showed differences in activity between the two manipulation conditions. No voxels were 

significant in this analysis, suggesting that overall activity levels were well matched 

between the manipulation tasks. We did not see a univariate effect in occipital cortex. 

This is expected, given that visual stimuli were equated across the four conditions. 

However, because we hypothesized that visual cortex plays a role in mediating operations 

on visual imagery, we included an anatomically-defined occipital mask in our set of 

ROIs. This gave us 12 ROIs to investigate for informational content relevant to the 

mental operations. 

 

Figure 2.2. ROIs 

11 ROIs showing differential activity levels between manipulation and maintenance conditions. An 

additional occipital cortex ROI was defined anatomically. Abbreviations. OCC: occipital cortex; CERE: 

cerebellum; PPC: posterior parietal cortex; PCU: precuneus; PITC: posterior inferior temporal cortex; 

THAL: thalamus; MTL: medial temporal lobe; FEF: frontal eye fields; DLPFC: dorsolateral prefrontal 

cortex; SEF: supplementary eye field; FO: frontal operculum; MFC: medial frontal cortex. 

We then attempted to decode the particular mental operations performed by 

participants based on spatiotemporal patterns of BOLD responses in each of these 12 

ROIs. We carried out a multivariate pattern classification analysis (53) within each ROI. 
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In this analysis, a classifier algorithm is first trained by providing it with a set of BOLD 

response patterns from the ROI along with the mental operation associated with each 

pattern. Then, a holdout pattern not involved in the training is used to test the classifier. If 

the classifier can predict above chance the mental operation associated with the holdout 

pattern, the ROI contains information specific to that particular mental operation and is 

likely involved in mediating that operation. We carried out two-way classifications in 

each ROI between construct parts and deconstruct figure conditions and between 

maintain parts and maintain figure conditions, with results shown in Figure 2.3A. In order 

to evaluate the informational content of each ROI in a single analysis, we constructed the 

model confusion matrix that would be expected for regions that mediated the mental 

operations (Figure 2.3B). A confusion matrix indicates the similarity between patterns 

from different conditions—if patterns are more similar, the classifier will be more likely 

to confuse them. In this case, we expected high similarity between patterns from the same 

condition, moderate similarity when both patterns were from either manipulation or 

maintenance conditions, and low similarity when one pattern was from a manipulation 

condition and the other was from a maintenance condition. We then carried out 

correlation analyses between this model and the actual confusion matrix in each ROI 

derived from four-way classifications among the conditions (Figure 2.3C). These 

analyses identified a subset of the ROIs, consisting of occipital cortex, posterior parietal 

cortex (PPC), precuneus, posterior inferior temporal cortex, dorsolateral prefrontal cortex 

(DLPFC), and frontal eye fields, in which we could decode the specific mental operations 

from patterns of neural activity. Additional control analyses confirmed that our results 
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were not due to ROI size or differences in response times between conditions (see Figure 

S2.1 & Table S2.1). 

 

Figure 2.3. Multivariate pattern classification results 

A. Results for two-way classifications in each ROI between manipulation conditions and between 

maintenance conditions. Bar plot shows classification accuracies, in descending order. Error bars are 

standard errors of the mean. Asterisks indicate accuracies significantly above chance (p ≤ 0.05, false 

discovery rate [FDR] corrected across the 24 comparisons). Table S2.2 shows full statistical results. B. 

Model similarity structure for regions that mediate the mental operations. Manipulation and maintenance 

conditions should be more similar within than across condition types. C. Confusion matrices from four-way 

classifications in each ROI. Values are percentages. Asterisks indicate regions in which confusion matrices 

correlated significantly with the model (p ≤ 0.05, FDR corrected across the 12 comparisons). Because ROIs 

were selected based on differences in activity between manipulation and maintenance conditions, we only 

considered values within manipulation and maintenance conditions in the correlation (within the green 

squares in part B). Table S2.3 shows full statistical results. 

Each of the four operations followed a three stage temporal sequence, in which 

participants encoded an input into a mental representation, performed a mental operation 

on that representation (construct, deconstruct, or maintain), and produced an output 
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mental representation. Each of these stages entailed a unique relationship among the 

mental states associated with the four conditions (Figure 2.4A). For example, the inputs 

to the construct parts condition were similar to those of the maintain parts condition, the 

operation performed during the construct parts condition was similar to that of the 

deconstruct figure condition, and the outputs from the construct parts condition were 

similar to those of the maintain figure condition. Thus, the relationship among the 

conditions evolved throughout the trial and provided a means of further exploring the 

informational content of the mental workspace. To do this, we carried out a four-way 

classification among the conditions at each time point and correlated the resulting 

confusion matrices with each of the three model similarity structures in Figure 2.4. High 

correlation between a confusion matrix and one of the model structures would indicate 

that a particular region was carrying out the corresponding stage of processing at that 

time. Figure 2.4B shows the time course of correlations with each model in occipital 

cortex. In Figure 2.4C, we report peak correlation times in each of the 12 ROIs. In the 

four regions with highest classification accuracies in Figure 2.3A, correlation peaks 

progressed from input through operation to output, providing strong evidence that these 

four areas directly mediated the mental operations as they unfolded over time. It should 

be noted that the differences between test stimuli could have affected the output (orange) 

correlation time course since the output mental representations were similar to the stimuli 

presented during the test phase. Our experimental design did not allow us to evaluate the 

relative contributions of the output mental representations and of the test stimuli to the 

output correlation time course. 
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Figure 2.4. Temporal progression of neural informational structure during mental operations 

A. Model similarity structures between the four conditions based on the input mental representation, the 

mental operation performed, and the output mental representation. For example, constructing and 

maintaining parts have similar input representations while constructing parts and maintaining figures have 

similar output representations. Red outline indicates values used in the following correlation time courses. 

B. Time course of correlations in occipital cortex between model similarity structures and confusion 

matrices from individual time point classifications. Error bars are standard errors of the mean. Schematic at 

bottom shows the trial stages. c. Peak correlation times for the 12 ROIs. In the four ROIs with highest 

classification accuracies in Figure 2.3, the peaks in the correlation time courses followed a significant 

sequence from input mental representation, through operation, to output representation (significant ROIs 

indicated with asterisks). Table S2.4 shows full statistical results. 

The above analyses show that a subset of ROIs supports the temporal evolution of 

information necessary to carry out particular mental operations. However, they do not 

provide evidence about how these regions communicate within the mental workspace 

network. We investigated this by analyzing patterns of functional connectivity between 

the ROIs. For each condition, participant, and region we constructed a time course by 

concatenating the mean BOLD signal within that region across the participant’s correct-
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response trials for that condition. We calculated the functional connectivity, defined as 

the correlation between pairs of time courses, for each condition, participant, and pair of 

regions (58). This yielded one network-wide pattern of functional connectivity for each 

condition and participant. A cross-subject classification analysis on these connectivity 

patterns successfully predicted whether participants mentally manipulated or maintained 

imagery with 61.7% accuracy [t(14) = 2.4, p = 0.029]. This indicates that patterns of 

connectivity between the network components changed depending on the operation that 

participants performed on the contents of their mental imagery. Investigating the weights 

that the classifier assigned to each pair of regions allowed us to determine which 

connections were most informative ( Figure 2.5A). Connectivity increases between pairs 

with positive weights drove the classifier toward the manipulation conditions, while 

increases between pairs with negative weights drove it toward the maintenance 

conditions. Thus, stronger connectivities with the precuneus and with left posterior 

inferior temporal cortex indicated manipulation conditions, and stronger connectivities 

primarily with the medial temporal lobe indicated maintenance conditions. In  Figure 

2.5B, we plot the difference in functional connectivity between conditions. The 

precuneus and posterior inferior temporal cortex showed stronger connectivity with 

several frontal and parietal regions during manipulation conditions while connectivity 

between the medial temporal lobe and many regions became weaker. Thus, our data show 

not only that a distributed set of regions mediates mental operations, but also that these 

regions communicate in an information processing network. The network switches 

between two connectivity profiles depending on whether mental representations are 

maintained or manipulated. 
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Figure 2.5. Multivariate pattern analysis of functional connectivities 

A. Sensitivities for each pair of ROIs in a between-subject classification of functional connectivity between 

manipulation and maintenance conditions. Red sensitivities are positive, driving the classifier toward 

choosing “manipulate.” Blue sensitivities are negative, driving it toward “maintain.” Only significant non-

zero sensitivities are shown [p ≤ 0.05, corrected for similarity between folds (70)]. Saturated colors indicate 

sensitivities that survived FDR correction across the 231 comparisons. B. Difference in functional 

connectivity between manipulation and maintenance conditions. Positive and negative differences are 

separated into the upper and lower diagonals, respectively. Only significant connectivity differences are 

shown (p ≤ 0.05), and differences surviving FDR correction are shown saturated. 

Discussion 

Our findings reveal a widespread cortical and subcortical network that operates on 

visual representations in the mental workspace. This network includes four core regions 

spanning DLPFC, PPC, posterior precuneus, and occipital cortex that manipulate the 

contents of visual imagery. Within these regions we decoded and tracked the evolution of 

mental operations over time. Several other areas showed a difference in BOLD responses 

between the manipulation and maintenance conditions but without the specificity found 

in the four core areas. An extended network of regions is therefore likely involved in the 

operations. Changes in patterns of connectivity between the mental workspace network’s 



19 

nodes reveal that the network supports at least two distinct modes of operation, 

depending on whether mental representations are maintained or manipulated. We discuss 

each of the identified components of the network below. 

Frontoparietal cortex. Our finding that DLPFC and PPC directly mediate 

manipulation of visual imagery is supported by multiple studies suggesting that a network 

of frontal and parietal areas is involved in many high level cognitive abilities in humans 

(33–36). Miller and colleagues showed that the responses of neurons in DLPFC convey 

more information about the task-relevance of stimuli than about their specific features 

and that this selectivity for task-relevance is maintained over extended durations in the 

absence of stimulus input (71). Thus, the DLPFC appears to be part of a network that 

maintains representations in working memory via attention. Human neuroimaging studies 

have shown that DLPFC and PPC are both activated regardless of the type of information 

that is held in working memory (72, 73). Selectivity for task rather than representation 

distinguishes this system from subsidiary systems that are capable only of maintaining 

particular classes of information (74). These findings support the view that the 

frontoparietal network is an executive system that recruits subsidiary systems, as 

proposed in Baddeley’s (75) model of working memory. Modeling work by O’Reilly and 

colleagues (68, 69) has shown how prefrontal cortex may be able to flexibly self-organize 

abstract rules and later apply them to specific representations. This ability is common to 

many flexible cognitive processes in humans such as analogical reasoning, creativity 

(34), and fluid intelligence (36). Our data provide empirical support for this model by 

showing that the DLPFC and PPC mediate not just the maintenance of representations in 

working memory, but also the manipulation of those representations. Thus, these areas 
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may form the core of a system that mediates conscious operations on mental 

representations, in this case the contents of visual imagery represented at least partially in 

occipital cortex. 

Occipital cortex. Several studies have found that the occipital cortex processes 

information relevant to internally-generated visual experience. Harrison and Tong (42) 

used patterns of activity in early visual cortex to decode the orientation of gratings that 

participants maintained in working memory. Recently, Horikawa and colleagues (67) 

decoded the contents of participants’ visual experience while dreaming from patterns in 

visual cortex. Thus, the visual cortex likely represents the contents of both internally- and 

perceptually-generated visual experience. Our results extend these findings to show that 

mental representations are not only formed but also operated on in visual cortex. This 

may generalize to other sensory domains, such that the brain mediates perceptual 

processes and operates on the corresponding mental representations in the same regions. 

Precuneus. Margulies and colleagues reported that the precuneus in humans is 

functionally connected to lateral frontal, posterior parietal, and occipital cortices (76). 

The precuneus is one of the most connected regions of the cortex, suggesting that it may 

serve as a hub in several cortical networks. In their review, Cavanna and Trimble (77) 

cite a body of evidence that the precuneus is involved in visuospatial imagery, is 

relatively larger in humans than in non-human primates and other animals, and is one of 

the last regions to myelinate during development. Consistent with these findings, Vogt 

and Laureys (78) propose that the precuneus plays a central role in conscious information 

processing. Extending this work, our data show that the posterior precuneus becomes 

more functionally connected to DLPFC, PPC, and occipital cortex when participants 
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manipulate mental visual representations and suggest that it acts as a hub in the mental 

workspace network. 

Extended network. Our findings reveal that the DLPFC, PPC, posterior 

precuneus, and occipital cortex are central to the mental workspace. However, several 

other regions activated during the experimental tasks. Current understanding of these 

areas’ functions suggests possible roles they could play in mental operations. The 

cerebellum, long thought to be exclusively involved in motor coordination, is now known 

to connect strongly to prefrontal and posterior parietal cortices and to mediate attentional 

processes (79). Posterior regions of the inferotemporal cortex are involved in visual 

object processing (80). The thalamus is a hub for interaction between cortical areas and 

may play a critical role in consciousness (47). The medial temporal lobe (MTL) is a hub 

in memory formation and retrieval (81). This is supported by our finding of stronger 

functional connectivity between the MTL and other ROIs during maintenance conditions. 

The frontal and supplementary eye fields play a role in controlling visual attention (82). 

Recently, Higo and colleagues (83) showed that the frontal operculum controls attention 

toward occipito-temporal representations of stimuli held in memory. And the medial 

frontal cortex is a hub in the default mode network that plays a role in self-directed 

attentional processes (84). Thus, all of these regions are likely involved in the mental 

operations performed by participants. 

A significant new finding of the present study is that connectivity in the mental 

workspace network switches between orthogonal modes of operation depending on 

whether the network maintains or manipulates representations. Although several network 

components represent information during both tasks, our data show that patterns of 
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network connectivity associated with these tasks differ substantially. Maintenance of 

representations involves dense, bilateral interconnections across the entire network with 

the MTL acting as a hub, while manipulation of those representations recruits a sparse, 

slightly left-lateralized network with a hub in the posterior precuneus. Whereas the MTL 

hub does not contain specific information about either mental representations or 

manipulations, the posterior precuneus hub contains information specific to each 

operation. This suggests that these hubs serve distinct functions across the tasks. The 

MTL appears to bind network components together, while the posterior precuneus may 

exchange information within a sparse core of this network that itself supports 

manipulation of representations. 

Previous studies have not been able to find evidence that the areas we identified 

play specific roles in manipulating representations. They have shown differences in 

BOLD or connectivity or have been able to classify between maintenance and 

manipulation in certain areas (85–87) but have not shown that these areas are responsible 

for the manipulations themselves. An alternative explanation of these findings could 

merely be that attentional allocation is increased during manipulation over maintenance 

tasks. A major advance of the current study is the investigation of neural activity in two 

qualitatively distinct types of manipulations. We showed that a subset of areas in the 

mental workspace network contains information specific to particular manipulations. We 

additionally showed that the task-related informational structure of these areas evolves 

over time in accordance with the manipulations performed. This provides novel and 

specific evidence for the particular network components that directly mediate mental 

operations. 
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Human cognition is distinguished by the flexibility with which mental 

representations can be constructed and manipulated to generate novel ideas and actions. 

Dehaene (65) and others have proposed that this ability is a key role of a global neuronal 

workspace that in part realizes our conscious experience. Here we have shown that 

patterns of activity in just such a distributed neuronal network mediate the flexible 

recombination of mental images. While the present study was limited to visual imagery, 

we anticipate that this network is part of a more general workspace in the human brain in 

which core conscious processes in frontal and parietal areas recruit specialized 

subdomains for specific mental operations. Understanding the neural basis of this 

workspace could reveal common processes central to the flexible cognitive abilities that 

characterize our species. 

 

Materials and Methods 

Participants. 16 participants (6 females, aged 19-30 years) gave informed written 

consent according to the Institutional Review Board guidelines of Dartmouth College 

prior to participating. Data from one participant who could not achieve our task accuracy 

criterion were discarded before further analysis. Participation consisted of two sessions: 

an initial behavioral session during which participants practiced the tasks and an fMRI 

session. 

Stimulus. 100 abstract parts served as the stimulus set (Figure 2.1C). The first 

eight parts were manually defined. Each subsequent part was generated by randomly 

perturbing a quarter circle while fixing the endpoints. For each part, 1000 shapes were 

randomly generated and the shape with lowest correlation to the previous shapes was 
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chosen. The complexity of parts scaled with the number of control points used to 

generate them. Any four parts could be assembled into a 2 × 2 figure (Figure 2.1A). A 

difficulty index d that scaled from 0 to 1 was used to specify the subset of parts to use, 

enabling us to control the difficulty of each task independently for each participant. 

Task. Participants performed four mental operations with the stimuli: They 

mentally constructed four parts into a figure, deconstructed a figure into four parts, 

maintained four parts, or maintained a figure. Parts were always displayed in a horizontal 

row, rotated into the correct orientation such that, if constructed into a figure, they would 

be ordered clockwise starting with the upper right quadrant. During each 12s trial, 

participants performed one operation. At the start of each trial, a figure and four unrelated 

parts were displayed, one above and the other below fixation (counterbalanced across 

trials). Both a figure and parts were displayed to equate for low-level image properties 

and attention across tasks. After 2s, the stimulus disappeared and was replaced for 1s by a 

task prompt consisting of either an upward or downward facing arrow and the letter “C”, 

“D”, or “R”. The arrow indicated which of either the figure or parts would be used in the 

task, and the letter indicated the operation to perform on the stimulus (C: construct; D: 

deconstruct; R: remember). The participant then had 5s to perform the operation, during 

which only a fixation dot appeared. Finally, a test screen appeared in which either four 

figures or four sets of parts (depending on the task) were shown for 2.5s. One of these 

stimuli was the output of the instructed operation, and the other three were distractors that 

were identical to the target except for a single part. The participant was instructed to 

indicate the target within 4s of the test screen’s appearance. During the behavioral session 

participants completed 50 trials of each operation type, with stimulus complexity set 
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using a staircase procedure. From these data we estimated the d value for each operation 

at which each participant chose the correct target in 2/3 of trials. 

MRI acquisition. Data were collected using a 3.0 T Philips Achieva Intera 

scanner with a 32-channel sense head coil at the Dartmouth Brain Imaging Center. 

Whole-brain functional images were acquired using a T2*-weighted gradient-EPI scan 

(2000ms TR, 20ms TE; 90° flip angle, 240 × 240mm FOV; 3 × 3 × 3.5mm voxels; 0mm 

slice gap; 35 slices). Structural images were acquired using a T1-weighted magnetization-

prepared rapid acquisition gradient echo sequence (8.176ms TR; 3.72ms TE; 8° flip 

angle; 240 × 220mm FOV; 188 sagittal slices; 0.9375 × 0.9375 × 1mm voxels; 3.12min 

duration). Participants completed 10 functional runs. Each run consisted of 16 trials 

interleaved with 10s blanks, giving 40 trials for each condition. The d value was updated 

on each trial so that participants achieved 2/3 accuracy for each trial type. 

MRI preprocessing. fMRI data were preprocessed using FSL (88). Data were 

motion and slice-time corrected, high-pass filtered with a 100s cutoff, and spatially 

smoothed with a 6mm FWHM Gaussian kernel. Structural images were processed using 

the FreeSurfer image analysis suite (89). 

ROI selection procedure. A whole brain GLM analysis was carried out on 

functional data using FSL’s FEAT tool. A first-level analysis for each participant used 

boxcar predictors for each of the four conditions, convolved with a double-gamma 

hemodynamic response function (HRF). Only trials for which participants made correct 

responses were included (~27 per condition). The results of this analysis were passed to 

higher-level cross-subject analyses, carried out in MNI space, in which t-contrasts were 

defined for manipulate > maintain and for manipulate < maintain. Each t-contrast map 
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was cluster thresholded at z ≥ 2.3; clusters were then thresholded at p ≤ 0.05 according to 

Gaussian Random Field theory (88). This analysis yielded 11 bilateral ROIs that were 

then transformed back into each participant’s native space for further analysis. An 

additional occipital ROI was defined anatomically in each participant’s native space 

using the following cortical masks from FreeSurfer: inferior occipital gyrus and sulcus, 

middle occipital gyrus and sulci, superior occipital gyrus, cuneus, occipital pole, superior 

occipital and transverse occipital sulci, and anterior occipital sulcus. 

Multivariate pattern analysis (MVPA): Classification. MVPA was carried out 

using PyMVPA (90). Spatiotemporal patterns were constructed for each correct-response 

trial and ROI using the z-scored BOLD response from TRs 4-6 of each trial (the period 

during which the operation was performed, after shifting by a 4s estimate of the HRF 

delay). Classification was carried out in each ROI between construct parts and 

deconstruct figure trials and between maintain parts and maintain figure trials, using 

these patterns, a linear support vector machine (SVM) classifier, and leave-one-out cross 

validation. Significance of accuracies was evaluated using one-tailed, one-sample t-tests 

compared to chance (50%) and false discovery rate (FDR) corrected across the 24 

comparisons (one for each ROI and classification). A four-way classification was also 

carried out in each ROI to produce the confusion matrices in Figure 2.3C. Correlation 

analyses were carried out between each of these confusion matrices and the model 

similarity structure in Figure 2.3B. Significance was determined at p ≤ 0.05, FDR 

corrected across the 12 comparisons (one for each ROI). 

MVPA: Correlation time courses. Four-way classifications were carried out at 

each time point of the trial, here using spatial patterns of BOLD signal across all voxels 
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within each ROI. This produced a confusion matrix for each time point, and these were 

correlated with each of the model similarity structures in Figure 2.4A. The first structure 

models similarities between the conditions based on whether the input representation is a 

set of parts or a figure. The second structure models similarities based on the two types of 

operations carried out (manipulation or maintenance). The third structure models 

similarities based on the outputs from each condition. For each ROI and model structure, 

we calculated the time point at which the mean correlation reached a maximum, yielding 

the table in Figure 2.4C. These calculations were restricted to TRs 3-8, representing the 

pre-test portion of the trial, HRF shifted by 4s. For each ROI we carried out a one-way 

repeated measures ANOVA on the peak correlation times to test whether the expected 

progression from input through operation to output occurred. We performed the analysis 

on trimmed, jackknifed data, as recommended by Miller, Patterson, and Ulrich for 

latency analyses (70). In a jackknifed analysis with N subjects, N grand means of the data 

are calculated, each with one subject left out. The analysis is then performed on these 

grand means with corrections applied for the jackknife-induced decrease in variance. In 

the case of noisy estimates such as occurs when calculating latencies from single-subject 

time courses, this procedure provides cleaner results while not biasing estimates of 

significance. For each ANOVA we defined two orthogonal linear contrasts (C1 = -1/-1/2 

[input/operation/output]; C2 = -1/1/0) to evaluate the temporal order of the peaks. We 

determined that an ROI significantly followed the expected progression if and only if 

both of these contrasts were significant at p ≤ 0.05 uncorrected. 

Functional connectivity. The functional connectivity (58), defined as the Fisher’s 

z-transformed correlation between time courses, was calculated for each participant and 
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condition across all pairings of the 24 unilateral ROIs and using data pooled across all 

correct trials. This yielded a single connectivity pattern for each participant and 

condition. Unilateral ROIs were used to maximize the potential information in each 

pattern. We then carried out a cross-subject classification between manipulation and 

maintenance conditions, using these connectivity patterns and an SVM classifier. The 

sensitivities shown in Figure 5A are significantly different from zero in a one-sample t-

test, corrected for the artificially low variance due to similarity between folds (70) and 

thresholded at p ≤ 0.05. Saturated colors indicate sensitivities that survived FDR 

correction across the 231 comparisons (one for each connectivity). Differences are 

thresholded at p ≤ 0.05 in a one-sample t-test. Saturated colors again show differences 

that survived FDR correction. 
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Ch. 3: Information processing in the mental workspace is fundamentally 

distributed2 

Abstract. The brain is a complex, interconnected information processing network. In 

humans, this network supports a mental workspace that enables high-level abilities such 

as scientific and artistic creativity. Do the component processes underlying these abilities 

occur in discrete anatomical modules or are they distributed widely throughout the brain? 

How might the flow of information within such a network support specific cognitive 

functions? Current approaches have limited ability to answer such questions. Here we 

report novel multivariate methods to analyze information flow within the mental 

workspace during visual imagery manipulation. We find that mental imagery entails 

distributed information flow and shared representations throughout the cortex. These 

findings challenge existing, anatomically modular models of the neural basis of higher-

order mental functions, suggesting instead that such processes may occur at a 

fundamentally distributed level of organization. The novel methods we report may be 

useful in studying other similarly complex, high-level informational processes. 

                                                 
2 This chapter is currently under review for publication (108). 
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Introduction 

A hallmark of human cognition is the ability to volitionally construct and flexibly 

manipulate mental representations. Such abilities have been studied using several 

overlapping psychological constructs including working memory (7), mental imagery (8, 

91), visuospatial ability (9), mental models (10), analogical reasoning (11), and the 

mental workspace (1). In general, these terms denote the ability to work flexibly with 

mental representations, a skill that underlies much of human life from mundane tasks 

such as planning seating arrangements at family get-togethers to our species’ greatest 

artistic and scientific achievements. For instance, Albert Einstein wrote that his scientific 

thought process consisted primarily of “certain signs and more or less clear images which 

can be 'voluntarily' reproduced and combined” (12). Here we will use Logie’s term 

“mental workspace” to refer to the mental space in which these flexible cognitive 

processes occur. 

How does the human brain support the mental workspace underlying flexible and 

creative mental phenomena such as mathematical, scientific, and artistic thought (1)? 

Understanding how the brain enables the imaginative abilities of the mental workspace is 

an important goal for many fields (92, 93), and several models have proposed potential 

mechanisms (1, 7, 38, 47, 48, 94). Previous research has shown that manipulating visual 

imagery in the mental workspace recruits a neural network extending throughout the 

cerebral cortex and associated structures (95). An important question to answer of such a 

network is whether the component processes underlying the network’s function occur in 

anatomical modules or via a fundamentally distributed level of organization that 

transcends anatomical boundaries. However, our ability to measure and analyze complex 
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informational processes that are distributed widely in the human brain remains 

underdeveloped, and thus such questions are currently difficult to answer (39, 60, 61). 

Manipulation of visual imagery requires multiple component processes including 

a) forming a mental representation of an image and b) performing an operation to 

manipulate that representation. Several current, standard models propose that the 

different functional units of this network correspond to anatomically distinct neural 

structures. For instance, the ‘central executive’ in Baddeley’s model of working memory 

has been proposed to reside in dorsal lateral prefrontal cortex (DLPFC) and direct the 

formation of mental representations in modality specific regions such as visual cortex for 

the ‘visuospatial sketchpad’ or auditory cortex for the ‘phonological loop’ (7, 39–41, 44). 

Likewise, Postle argues that prefrontal cortex is not involved in the representation of 

working memory contents; instead, his model states that mental representations are 

processed exclusively by domain-specific sensory- or action-related regions (38). Thus, 

while these models hold that working memory and related abilities may recruit a 

“distributed” neural network in the sense that the complex functions of the network are 

mediated collectively by anatomically widespread regions, the component processes that 

constitute those complex functions are relegated to anatomically distinct modules. In 

many cases, empirical support for the anatomical modularity of these models derives 

from a failure to find (i.e. acceptance of null results) or often even look for relevant 

information in regions outside of those that the models propose (7, 38, 40, 44, 45). For 

instance, both Ishai and colleagues (44) and Lee and colleagues (40) found information 

pertaining to the visual but not the non-visual aspects of working memory representations 

in extrastriate visual cortex and found the opposite for lateral prefrontal cortex. Both 
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groups interpreted this to mean that extrastriate visual cortex processes visual aspects of 

working memory tasks but not non-visual aspects, and vice versa for lateral prefrontal 

cortex. While such conclusions are a common practice in the field, they amount to 

acceptance of null results regarding the information that was not detected in each 

respective area and are thus in danger of failing to account for information that may have 

been present but that was not detected by their methods. Baddeley’s anatomically 

localized model of working memory similarly relies on studies that either did not find or 

did not look for relevant information outside of hypothesized regions (7). 

However, mounting empirical evidence derived from new, network- and 

information-based analytical techniques paints a more complex picture, suggesting that 

many high-level cognitive processes occur at a level of organization that transcends any 

single neural structure (46–51, 96). We therefore hypothesized that the mental workspace 

emerges out of a fundamentally distributed sharing of informational processes throughout 

the cortex. This hypothesis runs contrary to modular accounts that claim information is 

segregated to specific anatomical regions, such as visual information occurring only in 

visual cortex or executive processing occurring only in prefrontal cortex (7, 38, 40, 44). 

However, we predicted that this emergent organization would only become apparent if 

studied using analytical methods that are sensitive to informational connections between 

widely distributed network nodes. 
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Figure 3.1. Experimental design 

A. The four shapes used in the experiment, related in a two-level hierarchical structure. Two shapes were 

derived from a 4 × 4 rectangular grid, and two shapes were derived from an analogous polar grid. At 

bottom is a similarity structure that represents the matrix form of the hierarchy. Each shape is more similar 

to itself than it is to any other shape, and each rectangular shape is more similar to the other rectangular 

shape than it is to either polar shape (and vice-versa). See ref. (95) for details on the particular values used 

in the similarity structure. B. The four mental operations used in the experiment, also related in a two-level 

hierarchy: 90° clockwise rotation, 90° counterclockwise rotation, horizontal flip, and vertical flip. The 

similarity structure for operations is constructed in the same manner as for shapes. 

To evaluate our hypothesis and investigate how the mental workspace network 

functions in both the representation and manipulation of visual imagery, we used 

functional magnetic resonance imaging (fMRI) to record cortical activity as participants 

performed a series of trials involving the mental manipulation of shapes maintained in 

working memory. During each trial, participants recalled one of four abstract shapes 

memorized previously (Figure 3.1A) and performed one of four mental operations on that 

shape (clockwise 90° rotation, counter-clockwise 90° rotation, horizontal flip, or vertical 

flip; Figure 3.1B). To support the functional analyses described below, the shapes were 
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related in a two-level hierarchy of similarity (see Figure 3.1A). The operations shared an 

analogous relationship (see Figure 3.1B). In order to ensure that neural activity associated 

with the shapes and operations was due to visual imagery rather than the presented visual 

stimuli, we constructed a unique mapping for each participant from shapes to letters and 

from operations to numbers. Each trial occurred as follows: At the start of a trial, four 

letter/number pairs (e.g. “C3”) appeared for 2s, with an arrow pointing to a single pair to 

indicate the shape and operation for the current trial. The other three pairs were shown as 

a visual control to ensure that any successful classification analyses were due to mental 

imagery rather than the visual stimuli. After a 6s period during which the participant 

performed the indicated mental operation, four shapes at various orientations appeared on 

the screen for 2s. One of these was the shape indicated previously, while the other three 

shapes again served as a visual control. The participant indicated whether the displayed 

shape was at the orientation that would result from the indicated operation and was then 

given feedback regarding whether their choice was correct or incorrect (see Figure S3.1 

for a trial schematic). 

Our analyses of the task-related fMRI data used a combination of existing and 

novel multivariate methods to investigate the informational structure of the network 

underlying the mental workspace. First, we performed ROI classification analyses with 

trials labeled based on either shape or operation, to determine the regions in which 

cortical activity supported information about mental representations and/or mental 

manipulations. Second, we developed a novel ROI cross-classification analysis to 

determine whether this information was shared between regions. Third, we developed a 

novel classification analysis on patterns of information flow between cortical regions to 
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determine how information related to the task was transferred between regions. Detailed 

descriptions of our analytical methods are presented in Materials and Methods and in 

Figure S3.2 and Figure S3.3, and summaries are given below. 

Figure 3.2. ROI classification results 

A. The six bilateral ROIs used in the 

current experiment, derived from the 

results of a previous study (see Materials 

and Methods). OCC: occipital cortex; 

PPC: posterior parietal cortex; PCU: 

precuneus; LOC: lateral occipital cortex; 

FEF: frontal eye fields; DLPFC: 

dorsolateral prefrontal cortex. B. Mean 

confusion matrix from a four-way 

classification among mental 

representations across the entire mental 

workspace network (compare to Figure 

3.2A). C. Analogous confusion matrix 

from a classification among mental 

manipulations (compare to Figure 3.1B). 

D. Results of four-way classification 

analyses in each ROI. Correlations 

between resulting confusion matrices and similarity structures in Figure 3.1 are Fisher’s Z-transformed. 

Error bars are jackknife-corrected standard errors of the mean (see Methods). Asterisks indicate 

significance in a one-tailed jackknifed t-test comparing Fisher’s Z-transformed correlations to zero across 

subjects (*: p <= 0.05; ***: p <= 0.001; *(n): p <= 1 x 10-n). Results are false discovery rate (FDR) 

corrected for multiple comparisons across the seven ROIs. 
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Results 

Performance accuracy was high after an initial training session during which 

participants memorized the shapes, operations, and corresponding letter and number 

mappings (responses were correct in 95.8% of trials across participants and conditions). 

One-way between-subjects analyses of variance showed no significant differences in 

accuracy across conditions, confirming that the difficulties of shapes and operations were 

well matched [for shapes: F(3,72) = 1.65, p = 0.185; for operations: F(3,72) = 0.369, p = 

0.775; see Table S2.1 for behavioral results]. 

ROI Classification Analysis. Our regions of interest (ROIs) for analysis of the 

fMRI data were the six bilateral cortical regions that contained information pertaining to 

the transformation of visual imagery in a previous study that used data independent from 

those of the current study (Figure 3.2A; see Materials and Methods for details on how 

these ROIs were defined) (95). Each area has been shown to play a role in neural 

processing related to the current task (33, 39, 42, 76, 80, 82). We used multivariate 

decoding methods to determine whether each ROI supported information about mental 

representations and/or mental manipulations of visual imagery, i.e. whether patterns of 

neural activity in each ROI could be used to classify either the shape that was represented 

in visual imagery during each trial or the operation that was used to manipulate that 

representation. 

Because of the hierarchical relationship that we introduced among shapes and 

operations, we measured classifier performance using a representational similarity 

analysis in which we correlated the confusion matrix resulting from each four-way 

classification with the matrix form of this hierarchical similarity structure (Figure 3.1A & 
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B) (56, 95). This measure allowed us to use information from both correct classifications 

(classification ‘hits’) and specific patterns of confusion (classification ‘misses’) between 

conditions that resulted from the relationships among shapes and among operations. 

Thus, classification was only “successful” if the classifier performed according to our 

hypothesized pattern of correct-classification and confusion, allowing us to verify that 

our results were not due to task-irrelevant factors such as the letters or numbers used in 

the task mapping. 

Initial classifications using the union of all ROIs confirmed that the information 

processing structure of this network matched precisely the similarity structures of both 

shape and operation sets [Figure 3.2B & 2C; for shapes: t(18) = 106., p = 8.59 x 10-26; 

for operations: t(18) = 16.0, p = 4.54 x 10-12; results are false discovery rate (FDR) 

corrected for multiple comparisons]. This result also held true for classification analyses 

performed on each ROI separately (Figure 3.2D; FDR corrected for multiple comparisons 

across the seven total analyses for each classification scheme). Because all of our results 

were significant, we verified the specificity of our analysis by conducting control 

classifications using two additional masks. The first was a functionally-defined, bilateral 

thalamus ROI from our previous study that showed increased but not task specific 

activity during mental manipulation of imagery compared to maintenance of imagery; the 

second was an anatomically-defined ventricle mask. None of the four control 

classification analyses using these masks reached significance, confirming that our 

original analyses detected information about the shapes and operations specifically within 

our six ROIs (see Table S3.2 for ROI control analysis results). As a further control to 

confirm that our analysis was valid and unbiased, we shuffled the labels randomly in each 
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classification and found that the correlations between confusion matrices and model 

similarity structures were no longer significant (Table S3.3). Thus, neural activity in each 

ROI supported information about both representation and manipulation of visual 

imagery. This result provides evidence that processing of both representations and 

manipulations is distributed throughout the mental workspace network, running counter 

to models such as Baddeley’s or Postle’s that propose that its component processes are 

segregated to particular cortical regions (7, 38, 40, 44, 45). The large effect sizes and 

specificity of our results underscore the sensitivity of our experimental design and RSA-

based analysis for uncovering information that other techniques such as univariate 

analyses or two-way classifications may have missed. 

ROI Cross-classification Analysis. Information about both representations and 

manipulations thus appears to be distributed throughout the mental workspace network, 

but what format does this information take? Our hypothesis states that information is 

shared commonly throughout the network. However, alternative proposals state that each 

network node specializes in a unique informational aspect of representation and 

manipulation. For instance, Lee and colleagues (40) suggest that whereas visual cortex 

represents image-level information, information in prefrontal cortex is conceptual in 

nature. To evaluate these alternatives, we developed a novel multivariate cross-

classification analysis to investigate whether information is shared among the nodes of 

the mental workspace network. In this analysis, we trained a classifier on data from one 

ROI and tested it on data from another ROI. A successful classification using this 

procedure would provide strong evidence for a shared informational format between 

regions, rather than the alternative possibility that both ROIs support information about 
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the task but in independent formats. However, ROIs are incompatible as voxel-based 

features spaces, presenting a technical hurdle to cross-classifying because cross-

classification requires patterns to share the same feature space. In other words, cross-

classification would require the feature space of each ROI to have identical 

dimensionality and each feature of one ROI to carry the same meaning as the 

corresponding feature in the other ROI. Thus, we first needed to transform each ROI’s 

data into a common feature space before we could perform the cross-classification 

analysis. 

Conceptually, we hypothesized that the functional data for a given ROI were a set 

of signals in voxel-space that represented a mixture of a number of underlying 

informational subprocesses that were shared in a distributed manner between the ROIs. If 

this characterization is valid, then principal component analysis (PCA) would allow us to 

transform our voxel-based data independently for each ROI in order to recover a set of 

principal component signals that represented the underlying subprocesses that were 

mixed between the voxel-space signals that we actually measured. We therefore used 

PCA to convert the voxel-based data from each ROI into 50 principal component signals. 

We chose the number 50 in order to construct classification patterns of sufficient size 

while remaining smaller than the size of our smallest ROIs (e.g. the lateral occipital 

ROI); however, we did not test whether this was the optimum dimensionality to use. This 

step allowed us to establish feature spaces for the ROIs that had uniform dimensionality. 

The second step required to construct a common feature space for cross-classification 

was to rearrange the dimensions of these feature spaces such that corresponding features 

carried the same informational meaning across ROIs. To achieve this for each cross-
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classification between two ROIs, we performed a pairwise matching of component 

signals between the two ROIs in order to maximize the total correlation between matched 

component signal pairs (i.e. so that each component signal from the first ROI was 

matched to a maximally similar signal from the second ROI). We performed this 

matching step independently for each fold of the cross-classification, leaving out data 

from the testing set in order to avoid artificially inflating the similarity of test patterns 

across the two ROIs. 

 

Figure 3.3. ROI cross-classification results 

Arcs indicate pairs of ROIs in which cross-classification was successful. Dotted arcs indicate classifications 

that were significant but did not pass FDR correction across the 15 ROI pairs. All other displayed 

classifications passed FDR correction. Arc thickness indicates t-statistic values in a one-tailed, jackknifed t-

test of Fisher’s Z-transformed correlations between confusion matrices and model similarity structures, 

compared to zero (see text). Abbreviations are as in Figure 3.2. 

This two-step process yielded a common 50-dimensional feature space for each 

fold of each cross-classification analysis (see Figure S3.2 for a visual schematic of the 
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procedure). Classification then proceeded exactly as in the previous ROI-classification 

analysis. We cross-classified between each pair of ROIs, with results presented in Figure 

3.3 (all results FDR corrected across the 15 ROI pairs). We could successfully cross-

classify mental representations between most pairs of ROIs, providing evidence that 

information about mental representations held in visual imagery is shared widely in a 

common format throughout the mental workspace network. The cross-classification of 

mental manipulation was significant only between DLPFC and PPC [t(18) = 1.93, p = 

0.0346 (uncorrected)]. However, this result did not hold after FDR correction. This result 

suggests that information about manipulations of visual imagery is distributed but may be 

more compartmentalized in the network, with DLPFC and PPC possibly sharing some 

information. As in the ROI classification above, we confirmed the validity of the analysis 

by performing control analyses in which labels were shuffled randomly. In this case, the 

cross-classifications were no longer significant, ruling out the possibility that our cross-

classification results occurred due to unknown biases introduced by our analysis pipeline 

(Table S3.4). Thus, information about mental representations is not only distributed 

throughout the network, but is also shared in a common format between many network 

nodes, while information about mental manipulations may be more compartmentalized 

but shared between some nodes. 

Information Flow Classification Analysis. In order to investigate how this 

information becomes shared, we developed a new method to analyze whether information 

pertaining to visual imagery representations and manipulations was carried in condition-

specific patterns of directed connectivity between pairs of network nodes. In other words, 

this analysis abstracted away from information contained in patterns of activity within 
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neural regions, seeking instead to probe the informational content of patterns of 

information flow between neural regions. Established methods for assessing directed 

connectivity are concerned primarily with determining whether processing in one region 

is predictive of later processing in another region (60, 61, 97). In this sense, these 

methods are analogous to univariate analyses in that they can detect increases or 

decreases in directed connectivity, but are insensitive to information that may be carried 

via patterns of such connectivity. Because of this limitation, two processes (e.g. 

clockwise and counterclockwise mental rotation) may entail distinct patterns of directed 

connectivity without involving differing overall magnitudes of directed connectivity, and 

would thus be indistinguishable by current methods. Furthermore, in the present analysis 

we were not concerned directly with whether information flowed between nodes, since in 

a densely connected, distributed network each node will likely exert a complex pattern of 

control over all other nodes. Rather, we wanted to know whether the condition-specific 

patterns of directed connectivity between the underlying informational processes that 

were distributed among these nodes supported information about specific mental 

representations and manipulations. If so, then the current analysis would provide further 

evidence for the findings of the previous two analyses that the information processing 

underlying the manipulation of mental imagery occurs at a fundamentally distributed 

level of organization in the cortex.  
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Figure 3.4. Information flow classification results 

A. Graph indicating directed ROI pairs 

in which patterns of information flow 

could be used successfully to classify 

mental representation. Dotted arrows 

indicate classifications that were 

significant but did not pass FDR 

correction across the 30 directed ROI 

pairs. All other displayed classifications 

passed FDR correction. Arrow thickness 

indicates t-statistic values in a one-tailed, 

jackknifed t-test of Fisher’s Z-

transformed correlations between 

confusion matrices and model similarity 

structures, compared to zero (see text). 

Light red arrows indicate posterior to anterior connections and dark red arrows indicate anterior to 

posterior connections. The greatest effect occurred for the OCC to LOC connection and the smallest 

significant effect occurred for the LOC to DLPFC connection. Both effect sizes for these two connections 

are indicated on the graph for reference. Abbreviations are as in Table S3.2. B. A topological sorting of 

the graph from panel A reveals that the OCC resides at the top of a bottom-up hierarchy of information 

flow for mental visual representations. C. Graph indicating directed ROI pairs in which patterns of 

information flow could be used successfully to classify mental manipulation. Arrow properties are as in 

panel A. D. A topological sorting of the graph from panel C reveals that the DLPFC and FEF reside at the 

top of a top-down hierarchy of information flow for mental manipulations of visual imagery. 

 

As directed connectivity patterns we used Granger-causal graphs (GC-graph) 

constructed independently for each unique task condition (61). Granger-causality is a 



44 

statistical method for evaluating the ability of a source signal to predict the future of a 

destination signal beyond the predictive power provided by the destination signal’s own 

past. While the validity of Granger-causality for fMRI data has come under scrutiny, 

computational and empirical work has shown that it is a viable technique when proper 

precautions such as those used in the present study are taken (61, 98, 99). Specifically, 

we investigated differences in patterns of Granger-causality between conditions rather 

than attempting to establish “ground-truth” connectivity between regions. Our GC-graphs 

were constructed as follows: First, voxel-based data from each ROI were transformed 

individually using PCA into 10 principal component signals, with the same rationale as 

described above for the cross-classification analysis. We used 10 components here 

instead of 50 so that our resulting GC-graphs would have a reasonable dimensionality for 

classification, but we again did not evaluate the optimal dimensionality to use. Next, we 

constructed a 10 × 10 GC-graph for each of the 16 unique task conditions (e.g. shape 1 + 

clockwise rotation), each participant, and each directed pair of ROIs (e.g. from PPC to 

DLPFC). Each GC-graph was constructed by computing the Granger-causality from each 

of the 10 principal components in the source ROI to each of the 10 principal components 

in the destination ROI, using only data from the single task condition. For each 

participant, task condition, and directed pair of ROIs this process yielded a pattern of 

directed connectivity (the GC-graph) that represented a task-specific, directed pattern of 

information flow between regions. We then used these GC-graphs as inputs to 

classification analyses as described above, with results presented in Figure 3.4 (Figure 

S3.3 provides a visual schematic of this analysis). Complementing our ROI classification 

and ROI cross-classification results, we found that frequently bidirectional patterns of 
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directed information flow between many nodes of the mental workspace network could 

be used to classify shape representations. A topological sorting of the resulting directed 

graph of significant classification results revealed a posterior to anterior hierarchy for 

mental representations, with the OCC at the top and connectivity cascading down to the 

DLPFC (i.e. a bottom-up hierarchy; Figure 3.4B). The pattern of results for the 

manipulation classification shows a sparser graph, with the DLPFC and FEF at the top of 

an anterior to posterior hierarchy (i.e. a top-down hierarchy; Figure 3.4D). Here, being 

placed at the top of the hierarchy indicates dominance in the sense that a higher node 

supports more information in outward flowing rather than inward flowing directed 

connectivity patterns. As in the previous two analyses, we performed control 

classifications with shuffled labels, confirming the validity of the analysis (Table S3.5). 

 

Discussion 

 The mental workspace is a cognitive system that enables the volitional, flexible 

mental operations underlying the mathematical, scientific, and artistic creativity that 

distinguish humans as a species (1, 65). Here we applied novel network-level pattern 

analysis methods to reveal the structure of information flow in the neural network that 

supports the mental workspace. We find that the component processes of representing 

and manipulating visual imagery entail a level of informational organization that 

transcends the anatomically-modular structures that standard models of working memory 

and related processes have regarded as functionally encapsulated modules. Instead, our 

data imply that such processes emerge out of the fundamentally distributed sharing and 

flow of information between the nodes of a cortex-wide network. We found that 
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representations entail the sharing and flow of information between all of the ROIs we 

tested. Mental manipulations showed patterns of information flow between all but one of 

our ROIs, but we did not find significant sharing of information at the scale of our fMRI 

data after correcting for multiple comparisons. It is important to note, however, that 

further information sharing and flow could have occurred at spatial or temporal scales or 

levels of information processing to which our data or analyses were insensitive. Because 

fMRI data are temporally low-pass filtered by the hemodynamic response function, our 

data can only address information flow that occurs on the scale of seconds. Nonetheless, 

our findings call into question ‘textbook’ anatomically-modular models of the neural 

basis of working memory and other higher order mental functions (7, 38, 40, 41, 45). 

 Existing neural models of working memory and related processes could be 

described as “distributed” in the sense that they assign the component functions of 

working memory to anatomical modules that are distributed across the brain. However, a 

key advance in the present study is to suggest that even these component processes that 

underlie the more complex functions we studied are distributed in the brain. Thus, 

contrary to models such as Baddeley’s that localizes executive functions to lateral 

prefrontal cortex and the storage of visual representations to occipital cortex, our data 

suggest that informational processing in the mental workspace is fundamentally 

distributed. In other words, anatomy may be incidental for the high-level mental 

functions studied here, with the actual functional separation of processes occurring at a 

higher level of informational organization. 

 Our work advances recently developed analytical techniques that approach the 

brain as an information processing network. Multivariate classification and 
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representational similarity analyses allow the informational structure of processes at 

many levels of organization to be probed (55, 56). Directed connectivity measures enable 

the investigation of effective functional coupling between network nodes (60, 61, 100–

102). Here, we adapted these techniques to answer two new kinds of question. First, our 

ROI cross-classification analysis was able to evaluate whether information is shared 

between multiple network nodes. Note that traditional RSA analyses as proposed by 

Kreigeskorte (56) are not able to answer this question generally. For instance, it could 

have been the case that visual cortex represents mental images only at a stimulus level 

(e.g. edges, corners, contrast) while prefrontal cortex represents those images only at a 

conceptual level (e.g. “the S-shape” or “the tadpole shape”). In this case, the dissimilarity 

structures derived from each ROI could still be highly correlated with each other (e.g. 

shape 1 and shape 2 are similar at the stimulus level because they are both derived from a 

rectilinear grid, and are also “conceptually” similar because they both look like letters). 

However, these matching dissimilarity structures would have derived from very different 

underlying informational spaces, and thus it would be erroneous to conclude that the 

correlation between those dissimilarity structures indicated sharing of information 

between the ROIs. The second question our new techniques allowed us to address was 

whether patterns of information flow between network nodes carry information about the 

functional significance of the connections between those nodes. These questions and the 

techniques described here to investigate them are generally applicable across a range of 

topics both within neuroscience—for instance learning (50), intelligence (36), language 

(2), and attention (103)—and in other fields that study similar informational networks in 

biology and beyond (104). 



48 

 It should be noted that using fMRI restricted our sensitivity to functional 

interactions occurring at millimeter or larger spatial scales and on the order of seconds. It 

is likely that we missed the distribution and sharing of information occurring in more 

local small-scale neural circuits and on shorter timescales than we could measure. For 

instance, the reduced sharing of information and connectivity we found for manipulations 

of visual imagery may not be an indication that such sharing and connectivity do not 

occur in the brain, if such processes happen at finer spatial or temporal scales than fMRI 

can measure. Additionally, focusing on the six ROIs that had previously shown 

information pertaining to visual imagery increased the power of our analyses within this 

restricted network. However, this statistical power was gained at the expense of 

potentially missing a larger scope for the mental workspace network. Indeed, we 

previously found six additional bilateral neural regions in the cerebellum, thalamus, 

medial temporal lobe, supplementary eye field, frontal operculum, and medial frontal 

cortex with activity that differed depending on whether visual imagery was manipulated 

or maintained, but we could not classify between different mental operations in these 

regions (95). Presumably, then, the mental workspace network is even larger and more 

distributed than we report here, with the contribution of these additional nodes yet to be 

determined. 

 While we found shared information pertaining to representations in each of the 

ROIs we studied, an alternative explanation for this finding could be that information 

about representations merely spreads passively from a single area such as visual cortex 

that actually processes that information. However, the widespread bidirectional 

information flow between many network nodes suggests that this is an unlikely 
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possibility. The bidirectionality, density, and hierarchical nature of the connectivity 

between these nodes lead more parsimoniously to an interpretation that the brain 

processes mental visual representations in a fundamentally distributed manner. 

Finally, connectivity analyses such as those presented here are vulnerable to the 

lurking variable problem, in which two network nodes appear to support a direct 

informational connection when in fact each supports independent yet parallel processes 

or is mutually driven by a third, unknown process. Our information flow results may be 

affected by this situation, since our network showed a dense pattern of connectivity and 

we did not test each connection for mediating variables. Because of this, we suggest that 

these findings be interpreted more holistically as providing evidence for fundamentally 

distributed information processing in the brain, rather than as having deduced a precise 

wiring diagram of the mental workspace network. 

Our results provide new evidence that high-level cognitive processes such as the 

representation and manipulation of visual imagery are mediated via the complex, 

fundamentally distributed flow and sharing of information throughout the cerebral cortex. 

While much work in cognitive neuroscience has been concerned with reducing the 

brain’s functions to discrete, localized regions, our results provide evidence that the 

component processes of at least some forms of high-level cognition occur in a manner 

that transcends any single neural structure, emerging fundamentally from the interaction 

between several levels of organization (104, 105). The field has found studying such 

interactions vital yet difficult (92, 93, 105, 106), and the new methods reported here to 

investigate the structure, sharing, and flow of information in the brain may prove useful 

in understanding many other complex cognitive processes (2, 6, 36, 50, 103). Future 
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work should investigate how precisely the distributed flow of information in the cortex 

supports high-level cognitive abilities and whether this mode of information processing is 

unique to certain forms of cognition or common across many cortical functions. 

 

Materials and Methods 

Participants. 19 participants (6 females, aged 18-51 years) with normal or 

corrected-to-normal vision gave informed written consent according to the guidelines of 

the Committee for the Protection of Human Subjects (CPHS) at Dartmouth College prior 

to participating. All experimental protocols were approved by CPHS (IRB #15822). 

Participation consisted of two experimental sessions: one behavioral session in which 

participants practiced the task until they reached criterion (described below) and a 

subsequent 1.75 hour fMRI scanning session. 

 Experimental Design. During each of a series of trials, participants performed 

one of four mental operations on one of four abstract visual shapes. The four mental 

operations were: 90° clockwise rotation, 90° counterclockwise rotation, horizontal flip, 

and vertical flip. The four abstract shapes are shown in Figure 3.1: two shapes were 

constructed from a 4 × 4 rectangular grid, and two were constructed from an analogous 

polar grid. All shapes were matched for area. To equate the visual presentation between 

conditions, we did not display the shape or operation to use in a given trial. Instead, each 

shape was mapped to one of the letters A, B, C, or D, and each operation was mapped to 

one of the numbers 1, 2, 3, or 4. Each participant was assigned a unique mapping and 

spent the practice session committing the shapes, operations, and mapping to memory. 

The practice session concluded once the participant responded correctly on 10 
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consecutive trials. At the start of each trial, a 2-second-long prompt screen displayed four 

letter/number pairs (e.g. “C3”). An arrow pointed to one of these pairs to indicate the 

shape and operation to use for the current trial. This screen was replaced by a fixation dot 

for 6-s during which the participant performed the indicated mental operation on the 

indicated shape. After this period, a 2-second-long test screen displayed each of the four 

shapes at various orientations relative to the starting orientations learned by the 

participants. The participant was instructed to identify the current trial’s shape on the 

screen and indicate via a button press within that 2s period whether it was in the 

orientation that would result from the trial’s indicated operation. In half of the trials the 

shape was in the correct orientation, and in the other half it was in a random, incorrect 

orientation. During the fMRI session, the operations and shapes were counterbalanced 

across all trials, and correct/incorrect trials and display positions were randomized. In 

order to encourage attentiveness, participants were paid based on their performance 

(receiving money for correct responses and losing money for incorrect responses, with a 

minimum base rate of reimbursement). Participants completed 15 fMRI runs, each of 

which consisted of 16 trials interleaved with 8s of rest to ensure that the BOLD response 

for a given trial was not influenced by activity from the previous trial (5’28” per run). 

Thus, each stimulus and operation occurred four times per run (60 times in total during 

the experiment), and 240 trials were administered over the scanning session. 

MRI acquisition. MRI data were collected using a 3.0-Tesla Philips Achieva 

Intera scanner with a 32-channel sense head coil located at the Dartmouth Brain Imaging 

Center. One T1-weighted structural image was collected using a magnetization-prepared 

rapid acquisition gradient echo sequence (8.176ms TR; 3.72ms TE; 8° flip angle; 240 × 



52 

220mm FOV; 188 sagittal slices; 0.9375 × 0.9375 × 1mm voxel size; 3.12 min 

acquisition time). T2*-weighted gradient echo planar imaging scans were used to acquire 

functional images covering the whole brain (2000ms TR, 20ms TE; 90° flip angle, 240 × 

240mm FOV; 3 × 3 × 3.5mm voxel size; 0mm slice gap; 35 slices). 

MRI data preprocessing. High-resolution anatomical images were processed 

using the FreeSurfer image analysis suite (89). Standard preprocessing of fMRI data was 

carried out: data were motion and slice-time corrected, high pass filtered temporally with 

a 100s cutoff, and smoothed spatially with a 6mm full-width-at-half-maximum Gaussian 

kernel, all using FSL (88). Data from each run were concatenated temporally for each 

participant after aligning each run using FSL’s FLIRT tool and demeaning each voxel’s 

time course. For the ROI classification (described below), data were prewhitened using 

FSL’s MELODIC tool (i.e. principal components were extracted using MELODIC’s 

default dimensionality estimation method with a minimum of 10 components per ROI). 

ROI Classification Analysis. Each trial could be labeled based on either the shape 

that was represented in visual imagery or on the operation that was performed to 

manipulate that representation. For each of these two labeling schemes, we used 

PyMVPA (90) to perform a four-way spatiotemporal multivariate classification analysis 

in each of the six ROIs that showed information pertaining to manipulation of visual 

imagery in a previous study (see Figure 3.2A) (95). Five of these (LOC, PPC, PCU, 

DLPFC, and FEF) were bilateral ROIs that showed greater activity during visual imagery 

manipulation than visual imagery maintenance in a whole-brain, group level general 

linear model analysis (see Ch. 2 for details). These ROIs were transformed separately for 

each participant from MNI space to that participant’s native functional space for use in 
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the current study. The remaining mask (OCC) was defined anatomically in each 

participant’s native anatomical space using the following labels from FreeSurfer’s 

cortical parcellation: inferior occipital gyrus and sulcus; middle occipital gyrus and sulci; 

superior occipital gyrus; cuneus; occipital pole; superior occipital and transverse occipital 

sulci; and anterior occipital sulcus (all bilateral). For the control ROI analysis, the 

thalamus was defined functionally as above, and the ventricle mask was defined 

anatomically from the following FreeSurfer cortical parcellation masks: left and right 

lateral ventricles, left and right inferior lateral ventricles, 3rd ventricle, 4th ventricle, and 

5th ventricle. 

For the spatiotemporal multivariate classification we used a linear support vector 

machine classifier and leave-one-trial-out cross validation. Because we only considered 

correct-response trials, a non-uniform number of trials existed for each condition and 

participant (57.4 trials per condition on average [SEM: 0.203]; see Table S3.1 for 

details). Even though the difference in number of trials was small, we ensured that they 

could not affect the classification results by including a target balancing step in our cross-

validation procedure. In this step, each classification fold was performed 10 times using 

random, balanced samples of the data, and the results for that fold were averaged across 

the 10 bootstrapped folds. For each classification we used the spatiotemporal pattern of 

prewhitened BOLD data from the first 3 TRs of each correct response trial, shifted by 1 

TR to account for the hemodynamic response function (HRF) delay inherent in fMRI 

data. We shifted by 1 TR only in order to include as much trial data as possible without 

also including data that could have been influenced by the test display. Pre-whitening 

reduced each ROI’s voxel-based pattern to an average of 93.6 data features (SEM: 4.83). 
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Thus each classification used spatiotemporal patterns of, on average, 280.8 dimensions 

(SEM: 14.5). Each feature dimension was z-scored by run prior to classification to reduce 

between-run differences in signal that may have occurred due to scanner or physiological 

noise. 

Our measure of classifier performance was the correlation between the confusion 

matrix resulting from the classification and the matrix form of either the shape or 

operation similarity structure (see Figure 2.1B & C). This measure is more sensitive than 

classification accuracy because it also takes into account confusions between conditions 

that result from the hierarchical relationship between the shapes and between the 

operations. We used a jackknife procedure to perform random-effects analyses evaluating 

the significance of the correlations (70). In the case of noisy estimates such as individual 

subject confusion matrices, jackknifed analyses can provide cleaner results without 

biasing statistical significance (see ref. (70) for more details on this method). In a 

jackknifed analysis with N subjects, N grand means of the data (in this case, confusion 

matrices) are calculated, each with one subject left out. The correlation between each of 

these grand mean confusion matrices and the model similarity structure was then 

calculated, and a one-tailed t-test evaluated whether the Fisher’s Z-transformed 

correlations were positive (i.e. whether there was a significant correlation between 

confusion matrices and the model similarity structure across participants). Because the 

jackknife procedure reduces the variance between subjects artificially, a correction must 

be applied to the t-statistic calculation; specifically, the sample standard deviation 

between correlations is multiplied by the square root of (N-1). 
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ROI Cross-classification Analysis. To assess whether information about mental 

representations or mental manipulations was shared in a common format between areas, 

we performed a cross-classification analysis in which a classifier was trained on data 

from one ROI and tested on data from a second ROI. This analysis used the same 

procedures as the ROI classification analysis described above. However, because the 

voxel-based feature space of each ROI differed, data from pairs of ROIs needed to be 

transformed into a common feature space prior to classification. In order to do this, we 

first used FSL’s MELODIC tool to transform each ROI’s data from voxel space to 50 

principal component signals using PCA. After this step, each ROI’s pattern had the same 

dimensionality, but those patterns’ features would be unlikely to correspond. Therefore, 

for each pair of ROIs these component signals were matched pairwise as follows in order 

to maximize the total similarity between component signals. First, the correlation 

distance (1 - |r|) between each pair of components was calculated, yielding a 50 × 50 

correlation distance matrix. Next, the rows and columns of this matrix were reordered 

using the Hungarian algorithm to minimize the matrix trace (107). The components 

meeting along the diagonal of this reordered, trace-minimized matrix defined the pairwise 

matching. If two components were matched by this procedure but were anti-correlated, 

one component was negated in order to produce positively-correlated component pairs. 

We performed this matching procedure for each fold of the cross validation 

independently, excluding test data in order to avoid inflating the similarity between 

training and testing patterns artificially. Once this procedure was complete, data from the 

two ROIs shared a common feature space, i.e. the two feature spaces had the same 

dimensionality and corresponding features in the two spaces were maximally similar. 
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Cross-classification could then proceed by training the classifier on data from one ROI 

and testing it on data from the other ROI. Each ROI served both as the training set and as 

the testing set, with results averaged between the two cases. Figure S3.2 provides a visual 

schematic of the cross-classification analysis procedure. 

Information Flow Classification Analysis. The goal of this analysis was to 

determine whether patterns of directed connectivity between processes occurring in pairs 

of ROIs could be used to classify either mental representations or mental manipulations. 

To this end, we transformed the functional data using PCA as above, but with 

dimensionality fixed at 10 components. For each participant, task condition (i.e. unique 

combination of shape and operation), and directed pair of areas (e.g. from PPC to 

DLPFC), we then calculated the Granger-causality with a lag of 1 TR between each 

directed pair of principal component signals (e.g. between component i of PPC and 

component j of DLPFC). As input data for each component we used the temporal 

concatenation of data from the first 5 TRs of each correct-response trial of that condition, 

shifted by 1 TR to account for the HRF delay. For each participant and directed pair of 

ROIs, this procedure yielded 16 10 × 10 Granger-causal graphs which were used as the 

patterns for classification. Each pattern was labeled based on either shape or operation 

and analyzed using a multivariate classification as in the ROI classifications described 

above. Because these patterns were defined for each task condition rather than for each 

trial, we used leave-one-operation-out cross validation for the representation analysis and 

leave-one-shape-out cross validation for the manipulation analysis. Directed connections 

with classification results that passed FDR correction for multiple comparisons across the 

30 directed pairs in each analysis were used to construct directed graphs which were then 
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sorted topologically (see Figure 3.4B & D). Figure S3.3 provides a visual schematic of 

the information flow classification analysis procedure. 
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Ch. 4: Widespread information sharing integrates the motor network into the 

mental workspace during mental rotation3 

Abstract. Studies of mental rotation and similar cognitive abilities suggest that the 

manipulation of mental representations in the human brain resembles the physical 

manipulation of real-world objects. Neuroscientific research has revealed that the 

representations and operations underlying such mental manipulations are implemented in 

distributed information processing networks. In particular, some neuroimaging studies 

have found increased activity in motor regions during mental rotation, suggesting that 

mental and physical operations may involve overlapping neural implementations. Does 

the motor network contribute information processing to mental rotation? If so, does it 

play a similar computational role in both mental and manual rotation, and how does it 

communicate with the wider network of areas involved in the mental workspace? Here 

we use a variation of a classic mental rotation paradigm along with multivariate decoding 

methods to investigate these questions. We find that information about mental rotations is 

shared robustly throughout and beyond the motor network, and that this information only 

partially resembles that involved in manual rotation. These findings establish that the 

motor network is recruited for mental rotation in a manner that both resembles and differs 

from analogous manual rotations. Additionally, these findings provide evidence that the 

mental workspace is organized as a distributed core network that dynamically recruits 

existing subnetworks for specific tasks. 
                                                 
3 This chapter is currently under review for publication (138). 
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Introduction 

In a seminal experiment on the mental manipulation of visual imagery, Shepard 

and Metzler (16) asked participants to mentally rotate visually presented three-

dimensional objects to determine whether they matched other similar objects. 

Participants’ response times correlated tightly with the angle of rotation that would be 

necessary in order to align the two objects, suggesting that they had mentally rotated 

endogenous mental models of the objects in a continuous manner as if manually rotating 

a physical object through space. Subsequent behavioral research has explored other 

operations such as mental paper folding (17), the generation and analysis of mental 

analog clocks (18), and mental simulations of mechanical systems (10), a primary result 

being that volitional mental operations appear in many respects to resemble their 

corresponding physical operations. Other work has documented similar processes in 

domains such as mental time travel (19), creative synthesis of mental imagery (20), and 

visuospatial reasoning (21). Thus, the human brain appears to support a mental space 

analogous to the physical world in which mental models can be constructed, manipulated, 

and tested in a flexible manner. 

Such abilities have been studied using several overlapping psychological 

constructs including working memory (7), mental imagery (8, 91), visuospatial ability 

(9), mental models (10), analogical reasoning (11), and the mental workspace (1). 

Following Logie (1), we will refer to the mental space in which these flexible cognitive 

processes occur as the mental workspace. 

What is the neural basis of this mental workspace that appears to be so central to 

the human capacity for imagination? While traditional neural models of working memory 
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and related processes posit an anatomically-modular organization in which physically 

segregated regions implement component functions such as a “central executive” or a 

“visuospatial sketchpad” (7, 38, 40, 44, 53), recently developed information- and 

network-based neuroscientific methods suggest instead that the mental workspace and its 

component processes may be implemented in a fundamentally distributed manner across 

the cortex and related regions (46–51, 95, 108). In particular, in a recent study we showed 

that information about both visual mental imagery and mental manipulations of that 

imagery is distributed among several regions across the cortex and that this information is 

shared in a common format via complex, hierarchical patterns of information flow (108). 

If, as these studies suggest, information is fundamentally distributed across the cortex 

during such high-level mental activity, then how and where does this information 

originate? Cognitive work such as that of Shepard and Metzler suggests the possibility 

that, in order to direct actions within the mental workspace, the brain may recruit existing 

neural circuitry that evolved for interactions with the physical world. 

In fact, several neuroimaging studies have reported activation in various motor 

areas during mental rotation tasks (33, 109–113). In addition, Kosslyn and colleagues 

(114) found evidence that participants can be trained to simulate the mental rotation of 

objects as if they were rotated manually by the hand. These findings support the idea that 

the mental workspace permits mental operations on endogenously constructed models as 

if they existed physically. However, these neuroimaging studies have given inconsistent 

accounts of the motor regions involved in mental rotation. Moreover, the functional role 

of the increases in cortical activation found in earlier studies is difficult to interpret. 
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Given the ambiguity and diversity of past findings, it is still unclear precisely what role 

motor processing may play, if any, in mental rotation. 

Figure 4.1. Experimental design 

A. The four 90° mental rotations used in the 

experiment. Left (“L”) and right (“R”) 

rotations occurred along the z-axis, while 

forward (“F”) and backward (“B”) rotations 

occurred along the x-axis. B. The four 

rotation directions are related in a two-level 

hierarchy, such that trials involving a given 

rotation are most similar to other trials 

involving the same rotation, moderately 

similar to trials involving opposite rotations 

along the same axis, and least similar to 

trials involving rotations along a different 

axis. This similarity structure is encoded in 

the model similarity matrix presented. C. A 

schematic of the trial design. In screen 1 the 

stimulus figure and mental rotation for the 

current trial are presented. In screen 2 only 

a fixation dot is shown. During these first 

8s of the trial, participants perform the 

indicated mental rotation and a concurrent 

fixation task to ensure that they do not move their hands in accordance with the mental rotation. In screen 3 

a test figure appears, and participants indicate whether this figure matches the result of the mental rotation. 

In screen 4 participants are given feedback about their response. 
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In light of the above findings and an emerging view of the mental workspace as 

both highly flexible and fundamentally distributed, we hypothesized that the network 

underlying the core functionality of the mental workspace would recruit the motor 

network into a larger, dynamically constructed network in order to carry out mental 

rotation. Here, we define the motor network as the set of brain regions that are 

responsible for the planning, production, and monitoring of movements. In order to test 

the hypothesis that the role of the motor network in mental rotation is to simulate the 

execution of physical rotations on imagined mental representations, we additionally 

investigated the relationship between information processing in the motor network during 

mental rotations and information processing during corresponding physical hand 

(“manual”) rotations. 

In a variation of Shepard and Metzler’s classic paradigm, we recruited 24 right-

handed participants for an initial behavioral session and a subsequent functional MRI 

(fMRI) scanning session in which they completed a series of trials involving either the 

mental rotation of three-dimensional cube assemblages (see Figure S4.1) or 

corresponding manual rotations. Figure 4.1C provides a visual schematic of the 

experimental trial design. In each mental rotation trial, participants mentally rotated a 

presented stimulus figure by 90° in one of four hierarchically related rotation directions 

(Figure 4.1A & B). In manual rotation trials, participants merely rotated their empty right 

hand in analogous directions. Because of the hierarchical relationship among the rotation 

directions, we could use multivariate decoding methods to evaluate whether rotation-

specific information processing in a set of cortical and subcortical regions of interest 

(ROIs) matched the informational structure of the rotation operations themselves, thus 
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providing a strong test of the functional role of each ROI in the network during mental 

rotation. We additionally used a newly developed ROI cross-classification analysis to 

evaluate whether the information carried by each network node was shared among all 

nodes in a common format (108), as would be expected if information processing in the 

mental workspace is fundamentally distributed. 

We used two strategies to evaluate the hypothesis that the motor network’s role in 

mental rotation is related to its function during physical motor actions. First, we used a 

two-group training design similar to that used by Kosslyn and colleagues (114) to 

evaluate whether the neural similarity of mental and manual rotations could be 

manipulated. In an initial behavioral session, participants were randomly assigned to one 

of two training groups without their knowledge and subsequently completed 100 training 

trials. Interleaved on half of the training session trials, participants in the first “non-

motoric” training group were shown an animation of the stimulus figure being rotated; in 

the subsequent fMRI session they were told to “imagine the mental rotations as an 

internal movie playing in your head.” Instead of the animations, participants in the 

second “motoric” training group were provided with physical wooden replicas of the 

stimulus figures that they could rotate manually; in the fMRI session they were told to 

“imagine rotating your mental image as you did the physical model.” Our second strategy 

to evaluate the role of the motor network was to perform a cross-classification analysis 

comparing the fMRI data from mental rotation and manual rotation trials in order to 

assess whether information processing in the motor network during mental rotation trials 

resembles information processing during analogous manual rotation trials. 
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Results 

Performance accuracy was high during the fMRI session (mean correct response 

rate was 88.5% [S.E.M. 1.02%] across all participants and conditions), indicating that 

participants had little difficulty carrying out the instructed mental rotations. A one-way 

analysis of variance showed no significant differences in the correct response rate 

between conditions [F(3,92) = 1.33, p = 0.270], confirming that the difficulty was well 

matched between rotation conditions (see Table S4.1 for behavioral results separated by 

rotation direction). We additionally found no significant behavioral differences between 

the two training groups [correct response rate for non-motoric training group: 86.2% 

(S.E.M 2.87%); for motoric training group: 90.9% (S.E.M 1.64%); t(22) = -1.42, p = 

0.170]. 

ROI Classification Analysis. We defined 13 ROIs for each subject that we 

evaluated for mental rotation-specific information processing using a multivariate 

classification analysis (Figure 4.2A & B). Seven of these ROIs were anatomically defined 

regions of the motor network, and six were previously shown to form part of a cortex-

wide network of regions that mediate mental workspace processes (95, 108) (see 

Materials and Methods for details on how each ROI was defined). The classification 

analysis used a standard cross-validation procedure (62). Briefly, in each fold of the 

cross-validation, a linear support vector machine classifier was initially trained by 

presenting it with a set of brain activity patterns derived from individual correct-response 

mental rotation trials along with the directions of the rotations performed on those trials. 

In a subsequent testing step the classifier was presented with a holdout sample activity 

pattern without a rotation-direction label and its ability to correctly label the pattern based 
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on the previous training step was evaluated. This procedure was performed individually 

for each ROI and participant. 

Figure 4.2. ROI classification results 

A. Seven bilateral motor network 

ROIs used in the analyses, shown on 

an MNI template brain. CERE: 

cerebellar cortex; PS: primary 

somatosensory cortex; PM: primary 

motor cortex; preMd: dorsal 

premotor cortex; preMv: ventral 

premotor cortex; SMA: 

supplementary motor area; preSMA: 

pre-supplementary motor area. B. 

Six bilateral ROIs found in previous 

studies (95, 108) to mediate 

processing in the mental workspace 

and used in the analyses here. OCC: 

occipital cortex; LOC: lateral 

occipital cortex; PCU: precuneus; 

PPC: posterior parietal cortex; FEF: frontal eye fields; DLPFC: dorsolateral prefrontal cortex. C. Results 

of four-way classification analyses in each ROI. Correlations between resulting confusion matrices and the 

similarity structure in Figure 4.1B are Fisher’s Z-transformed. Error bars are jackknife-corrected standard 

errors of the mean (see Materials and Methods). Asterisks indicate significance in a one-tailed jackknifed t-

test comparing Fisher’s Z-transformed correlations to zero across subjects (*: p <= 0.05; ***: p <= 0.001; 

* (n): p <= 1 x 10-n). Results are false discovery rate (FDR) corrected for multiple comparisons across the 13 

ROIs. 
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The result of each cross-validation was a 4 × 4 confusion matrix that represented a 

summary record of the classifier’s predicted labels relative to the true target labels across 

all cross-validation folds. A perfect classifier would yield a confusion matrix with non-

zero values only along the diagonal, since cells along the diagonal represent instances in 

which the target and predicted labels were the same. However, because we used mental 

rotations that shared a specific hierarchical similarity relationship (see Figure 4.1B), we 

expected the classifier to make a specific pattern of confusions among the brain activity 

patterns in ROIs that were involved in carrying out those mental rotations. For example, 

we expected that the classifier would confuse a left rotation with a right rotation (both 

along the z-axis) more often than it would confuse a left rotation (z-axis) with a forward 

rotation (x-axis), but only if the information processing underlying the brain activity 

patterns was related specifically to mental rotation. Thus, our measure of classifier 

performance was the correlation between the confusion matrix resulting from the cross-

validation and the matrix form of the rotation-direction similarity structure shown in 

Figure 4.1B. Note that because we used correlation as our measure, the specific 

numerical values of this model similarity matrix are irrelevant. Only the relative 

magnitudes of values matter for the correlation calculation, in this case signifying that a 

trial involving a particular rotation direction is most highly related to trials with the same 

rotation, moderately related to trials with opposite rotations along the same axis, and least 

related to trials with rotations along a different axis. We have successfully used this 

confusion matrix correlation measure in previous studies to probe the complex structure 

of information processing in the mental workspace (95, 108). 
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We conducted this procedure for each ROI and participant individually, and then 

assessed the information content within each ROI by performing an across-subject 

random effects analysis to determine whether a significant correlation existed between 

that ROI’s confusion matrices and the model rotation-direction similarity matrix. Results 

of this analysis are presented in Figure 4.2C, showing that each of our 13 ROIs supported 

robust information processing related to mental rotation (all results are false discovery 

rate [FDR] corrected for multiple comparisons across the 13 ROIs; see Figure S4.2 for 

confusion matrices for each ROI). This result may seem surprising according to 

traditional models of functional localization, since it indicates that areas as seemingly 

unrelated to the rotation directions as occipital cortex and primary somatosensory cortex 

carry information about specific mental rotations. However, this finding is consistent 

with previous results suggesting that information processing in the mental workspace is 

fundamentally distributed in the sense that traditional anatomical boundaries of 

functionality break down in these high level mental processes. In particular, this analysis 

establishes robustly that information processing related directly to mental rotation occurs 

throughout the motor network. 

ROI Cross-classification Analysis. We next sought to assess whether the 

processing of mental rotations is truly distributed across the 13 regions of this network. 

An alternative possibility is that each of the 13 regions plays a role in mental rotation, but 

that processing in each area is functionally isolated as would be expected in the case of 

anatomically-modular functional localization. Investigating this question also allowed us 

to evaluate whether the motor network plays a separate role or becomes tightly integrated 

into the larger mental workspace network during mental rotation. We used a recently 
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developed ROI cross-classification analysis to assess these alternatives. In this analysis a 

classifier is trained on data from one ROI and tested on data from a different ROI (108). 

A successful cross-classification would provide evidence that information is shared in a 

common format between the two ROIs. An unsuccessful cross-classification would leave 

open the possibility that the two ROIs represent information in separate formats. 

A technical challenge to cross-classifying between ROIs is that each ROI exists 

initially as an incompatible voxel-based feature space (i.e. each ROI consists of a 

different number of voxels [feature dimensions], and there is no meaningful mapping 

between the voxels of each ROI). Thus, cross-classification between two ROIs first 

requires data from the ROIs to be transformed into a common feature space. See ref. 

(108), Materials and Methods, and Figure S3.2 for details of this method. Briefly, we 

conceptualize our data as reflecting a set of high-level cognitive processes that are mixed 

between the voxels of the ROIs. A principal components analysis (PCA) rotation 

performed independently on the voxel-based data from each ROI allows us to transform 

our data from voxel-space to process/component-space, and additionally to control the 

dimensionality of each of the two feature spaces. We set the dimensionality of each 

ROI’s feature space to a fixed value (in this case 50-dimensions), and then pair up feature 

dimensions between the two ROIs in order to maximize the total correlation between 

component signals. This procedure is performed independently for each fold of each 

cross-validation, leaving out data from the testing set in order to avoid artificially 

inflating the similarity of test patterns across the two ROIs. 
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Figure 4.3. ROI cross-classification results 

Arcs indicate pairs of ROIs in which cross-

classification was successful. Results are 

FDR corrected across the 78 ROI pairs. Arc 

thickness indicates t-statistic values in a 

one-tailed, jackknifed t-test of Fisher’s Z-

transformed correlations between confusion 

matrices and the model similarity structure 

in Figure 4.1B, compared to zero. 

Connections within the motor network are 

colored light orange, those within the core 

mental workspace network are colored light 

blue, and those crossing between the subnetworks are colored dark blue. Abbreviations are as in Figure 4.2. 
 

 

Other than the feature-space transformation and difference in training and testing 

data sets, the ROI cross-classification was conducted exactly as described for the ROI 

classification above. We performed this cross-classification analysis for each ROI pair, 

with results shown in Figure 4.3 (all results FDR-corrected across the 78 ROI pairs). 

Each arc represents a successful cross-classification, indicating that information 

associated with mental rotations is shared between that pair of ROIs. Connections within 

the motor or core mental workspace subnetworks are shown in light orange and light 

blue, respectively, while connections across these two subnetworks are shown in dark 
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blue. We could successfully cross-classify between most pairs of ROIs, suggesting that 

information processing related to mental rotations is shared in a distributed manner across 

the network. In particular, a robust set of connections exist both within and between the 

motor network and other mental workspace regions, suggesting that the motor network 

becomes tightly integrated into the greater mental workspace network during mental 

rotation. 

Mental/manual rotation cross-classification. What role does the motor network 

play in mental rotation? To assess the possibility that the mental workspace recruits the 

motor network to simulate mental rotations as if they were manual rotations of physical 

objects, we performed a cross-classification analysis within each ROI in which we 

trained a classifier on data from mental rotation trials and tested it on data from manual 

rotation trials, and vice-versa. A successful cross-classification in a given ROI would 

imply that mental and manual rotations share overlapping neural implementations within 

that ROI. Other than the difference in training and testing data sets and the different 

number of cross-validation folds (data in this analysis were partitioned by mental/manual 

rotation condition rather than by trial), the classification analysis was performed and 

evaluated exactly as in the ROI classification analysis. Results of the cross-classification 

for each ROI are presented in Figure 4 (all results FDR-corrected across the 13 ROIs). 

Three ROIs showed significant informational similarity between mental and manual 

rotations. One of these ROIs, primary motor cortex, was in the motor network, and two 

ROIs, posterior parietal cortex and precuneus, were in the core mental workspace 

network. Two additional ROIs showed significant cross-classification results that did not 

pass multiple comparisons correction (supplementary motor area and dorsolateral 
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prefrontal cortex). Thus, some of the tested ROIs appear to share overlapping 

implementations of mental and manual rotations, while others may implement each 

process in a distinct manner. 

 

Figure 4.4. Manual/mental cross-classification results 

Results of four-way classification analyses in which the classifier was trained using data from mental 

rotation trials and tested using data from manual rotation trials, and vice versa. Correlations between 

resulting confusion matrices and the similarity structure in Figure 4.1B are Fisher’s Z-transformed. Error 

bars are jackknife-corrected standard errors of the mean (see Materials and Methods). Asterisks indicate 

significance in a one-tailed jackknifed t-test comparing Fisher’s Z-transformed correlations to zero across 

subjects (#: p <= 0.05 before FDR correction; *: p <= 0.05; **: p <= 0.01). Results are false discovery rate 

(FDR) corrected for multiple comparisons across the 13 ROIs. Abbreviations and ordering are the same as 

in Figure 4.2. 

 

Between-group differences in mental rotation. We reported above that the non-

motoric and motoric training groups did not show significant differences in behavioral 

performance. However, as Kosslyn and colleagues (114) suggest, participants in different 

training groups may still have employed different cognitive strategies that would lead to 
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differences in information processing when performing mental rotation. We conducted 

several analyses to evaluate this possibility. 

First, we conducted a univariate analysis similar to that used by Kosslyn and 

colleagues (114) to assess whether training induced differences in mental rotation-related 

brain activity. We initially restricted our analysis to the 13 ROIs from the previous 

analyses. For each ROI and participant we calculated the mean blood-oxygenation-level 

dependent (BOLD) activity change during mental rotation trials. For each ROI we then 

performed a two-tailed, unpaired t-test to assess whether these mean mental rotation-

related activity levels differed between the two groups. No ROI showed a significant 

difference in activity after FDR-correction across the 13 ROIs (see Table S4.2 for 

results). We next conducted an analogous but more exploratory whole-brain analysis to 

identify regions of the cortex that showed differences in activity between the two groups. 

No voxels were significant in this analysis after FDR-correction. 

While we found no univariate differences in brain activity between the two 

training groups, our more sensitive multivariate analysis might still show that information 

processing differed between the groups. To assess this possibility, we performed two-

tailed, unpaired t-tests as above but compared the ROI classification results, the ROI 

cross-classification results, and the mental/manual cross-classification results between the 

two groups. Each set of t-tests was FDR-corrected independently, and none of these tests 

showed significant differences between the two groups after correction (see Table S4.3, 

Table S4.4, Table S4.5). Thus, we failed to replicate the findings of Kosslyn and 

colleagues (114), since none of our multiple analyses found a behavioral or neuronal 

difference between the two groups due to the training manipulation. 
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Discussion 

Here we investigated the role of the motor network during mental rotation and its 

integration into the wider mental workspace. We found that the motor network supported 

robust information processing related directly to mental rotation and that this processing 

became dynamically integrated with the distributed, cortex-wide neural network 

underlying the mental workspace. These findings support a model of the mental 

workspace as consisting of a flexible core network that can dynamically recruit domain-

specific subnetworks for specific functions, much like a general contractor would employ 

specialists as needed for specific jobs. 

Each of the seven motor network ROIs that we tested carried information about 

specific mental rotations. This result held even in primary somatosensory cortex, a region 

better known for its role in mediating peripheral sensation. While perhaps surprising, 

several previous studies of mental rotation have found increases in activity during mental 

rotation in this and several other areas of the cortex (33). The present results move 

beyond this previous work by showing that activity in each of these regions is specific to 

the mental rotations that participants performed. Thus many areas in and beyond the 

motor network appear to play a functional role in carrying out mental rotations. 

Not only do regions throughout the cerebral and cerebellar cortex support 

information specific to mental rotation, but this information additionally appears to be 

shared in a common format throughout a widely distributed network. Our ROI cross-

classification analysis found that many pairs of ROIs in the network that we studied 

shared information in the sense that a classifier could use information from one ROI to 

make a mental rotation-related prediction based on information from a different ROI. 
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This information sharing held true both within the motor network, suggesting that several 

subregions of the motor network become tightly integrated during mental rotation, and 

also between the motor network and a core network of regions underlying the mental 

workspace. Such widely distributed information about mental rotations and the associated 

dense pattern of information sharing suggest that information processing in mental 

rotation entails a breakdown in the anatomical modularity argued for by models of the 

cortex that are based on functional localization. In support of this view, a recent 

neurophysiological study by Siegel and colleagues (115) suggests that anatomically 

segregated regions may only show functional specialization in the early stages of 

processing, whereas later stages of information processing occur in a much more 

distributed manner. Our ROI cross-classification results suggest that a common 

representational format may underlie the inter-regional communication and coordination 

that would be required within such a distributed system. 

Our findings are consistent with a model of the mental workspace that involves a 

domain general core network that can recruit other specialized subnetworks (e.g. the 

visual cortex or motor network) for specific tasks as needed. In particular, we found that 

the motor network was recruited and tightly integrated into a wider network during 

mental rotation. Consistent with the proposal that the motor network’s role is to simulate 

rotations of imagined objects as if they existed physically, we found that information 

processing in some regions of the network resembled information processing that 

occurred during actual physical hand rotations. However, in other regions both within and 

outside the motor network we found no similarity between mental and manual rotations. 

We also did not find that training participants to think of mental rotations as simulations 
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of manual manipulations of physical objects had any affect on subsequent neural activity. 

The reason for our failure to replicate the effect reported by Kosslyn and colleagues (114) 

is unclear. However, this difference in results may underscore the flexibility of the mental 

workspace that could allow different participant groups to implement the same functions 

(e.g. mental rotation) using widely different strategies. In sum, our results suggest that, 

while the motor network may contribute specialized action-related functionality to the 

mental workspace during mental rotation, its constituent nodes are also recruited in novel 

ways for processing that is unique to purely mental simulations. 

Much of the last two decades of cognitive neuroscience research has been 

concerned with assigning functions to localized regions of the cortex in what has been 

described as a kind of “neophrenology” (52). However, recent studies such as ours and 

that of Siegel and colleagues (95, 108, 115) and recent work focusing on the brain as a 

densely connected network (46, 104) suggest instead that high level cognition and 

possibly cognition generally may entail fundamentally distributed processing and the 

breakdown of local specialization of function. Furthermore, these findings suggest that 

distributed informational processing may coexist with functionally localized processing, 

either on different timescales or at different levels of informational organization. These 

new models may hint at a level of neural information processing that could form the basis 

of conscious activity similar to that of the Global Workspace Theory proposed by 

researchers such as Baars and Dehaene (65, 116), while remaining consistent with 

localized accounts proposed by Zeki and others (117). Future work should investigate the 

range of cognitive processes that entail dynamically distributed processing such as that 

described here. Is this kind of fundamentally distributed information processing unique to 
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high level mental functions, or might new methodological advances reveal that 

distributed processing is the rule rather than the exception for the brain? 

 
Materials and Methods 

Participants. 24 participants (11 females, aged 18-24 years) with normal or 

corrected-to-normal vision gave informed written consent according to the guidelines of 

the Committee for the Protection of Human Subjects at Dartmouth College prior to 

participating. All were right-handed according to the Edinburgh Handedness Inventory 

(118). Participation consisted of two sessions: one behavioral session in which 

participants were trained in the task and a subsequent fMRI scanning session. 

 Task. During each trial, participants performed one of four mental rotations on 

one of eight figures derived from Shepard and Metzler’s (16) original stimulus set 

(Figure S4.1). All rotations were 90°; two rotations were along the x-axis (called 

“forward” and “backward” rotations) and two rotations were along the z-axis (called 

“left” and “right” rotations) (see Figure 4.1A). Each trial lasted 12s and consisted of three 

phases: the task prompt and operation phase (8s), the test phase (2s), and the feedback 

phase (2s) (see Figure 4.1C for a visual schematic of the following trial description). 

At the beginning of the prompt/operation phase, a randomly chosen figure from 

the stimulus set, 8° of visual angle in size, was shown centrally. The figure was shown 

either as depicted in Figure S4.1 or flipped across the y-axis, and additionally either un-

rotated or rotated 180° along either the x- or z-axes. Superimposed on this figure in 

partially transparent text were two prompts: above, a randomly permuted sequence of the 

letters L, R, F, and B, and below, an integer from 1 to 4. The integer indicated the 
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position of the letter in the above sequence that denoted the mental rotation to carry out 

on the current trial (e.g. the integer “3” shown below the sequence “BLFR” would refer 

to the “F” and indicate that the current trial called for a forward rotation). The trial’s 

rotation was indicated in this way in order to equate the visual stimuli across the four 

mental rotation conditions. Had each rotation’s corresponding prompt letter appeared 

alone on each trial, the visual stimulus would then have differed systematically between 

conditions and created a possible visual confound in the subsequent multivariate 

classification analyses (described below). One could argue that increased attention was 

still directed to the indicated letter and thus may have led to systematic differences in 

visual representational processing between conditions. However, our confusion matrix-

based classifier performance measure (described below) served as a control for this 

possibility, as it was sensitive to a particular structure of relationships between the 

rotation directions that did not occur between the stimulus letters. 

The figure and rotation direction stimuli remained on screen for 6s and were 

replaced by a blank screen for 2s. The participant was instructed to perform the indicated 

mental rotation on the presented figure and to construct as vivid a mental image of the 

output as possible during this 8s period. Additionally, a red fixation dot appeared 

centrally during this phase of the trial. The fixation dot blinked blue on average once 

every 2s, and the participant was instructed to press the “up” button on a four-button box 

held in the right hand whenever this color change occurred. This fixation task was used in 

order to minimize the chance that participants might move their hands to mimic the 

mental rotation being performed. 
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After the prompt/operation phase, a test figure appeared on the screen for 2s. On 

half of trials, the test figure was the initial prompt figure after having undergone the 

indicated rotation (“correct” figure); on the other half of trials, the test figure was a y-

axis-flipped version of the initial prompt figure that had undergone the same rotation 

(“mirror image” figure). Participants were instructed to indicate within the 2s that the test 

figure was present on screen whether it was the correct figure (“left” button) or the mirror 

image figure (“right” button). 

Finally, a feedback screen indicated whether the participant made the correct 

response and, during the fMRI session, the current reimbursement amount. As an 

incentive to attend carefully during the approximately 1.5 hour fMRI session, participants 

gained $0.125 for each correct response and lost $0.625 for each incorrect response, with 

a baseline, minimum reimbursement of $20 and a maximum of $40. 

Each 5 minute, 28 second run of the fMRI session consisted of 16 trials (4 trials 

of each rotation type in counterbalanced order), with 8s of rest in between each trial. The 

fMRI session consisted of 10 runs of mental rotation trials followed by 3 runs of 

analogous hand rotation trials, in which physical rotations of the right hand were 

performed instead of mental rotations. Hand rotation trials matched the design of the 

mental rotation trials, except that no figures were shown, no fixation task or test response 

was required, and participants merely rotated their right hand continuously according to 

the prompt until the word “Stop” appeared at the time at which the feedback screen 

appeared during mental rotation trials. Before the hand rotation runs, videos were shown 

to the participant to demonstrate proper hand rotation in each of the four directions. Hand 

rotations resembled the motor actions that would be performed if a physical object was 
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rotated in the same manner as the mentally rotated figures. Even though left and right 

rotations and forward and back rotations, respectively, involved back and forth hand 

rotations along the same axis, participants were instructed and the videos demonstrated 

that more emphasis should be placed on motion in the indicated direction (e.g. more 

emphasis on the forward phase of rotation during forward rotation trials). Participants 

were not told about the hand rotation runs until they occurred, in order to avoid biasing 

participants to imagine their hands as playing a role in the mental rotations. 

 Training. During the initial behavioral session, participants were instructed in the 

task and completed 100 practice trials. The prompt/operation phase of practice trials was 

self-paced: participants viewed the prompt stimulus for as long as desired and indicated 

with a key press when they were ready for the test phase. In half of the practice trials, the 

prompt stimulus was accompanied by a guide to assist participants in performing the 

mental rotation, and in the other half of the trials the prompt occurred without a guide. 

Guide and no-guide trials were interleaved. Without their knowledge, participants were 

divided randomly into two training groups (12 participants in each group). In the non-

motoric training group, the guide was a looping animation shown below the prompt 

stimulus that depicted the figure undergoing the indicated rotation. In the motoric training 

group, the guide was a physical, wooden model that matched the prompted figure and 

that participants held and rotated manually. 

MRI acquisition. MRI data were collected using a 3.0-Tesla Philips Achieva 

Intera scanner with a 32-channel sense head coil located at the Dartmouth Brain Imaging 

Center. One T1-weighted structural image was collected using a magnetization-prepared 

rapid acquisition gradient echo sequence (8.176ms TR; 3.72ms TE; 8° flip angle; 240 × 
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220mm FOV; 188 sagittal slices; 0.9375 × 0.9375 × 1mm voxel size; 3.12 min 

acquisition time). T2*-weighted gradient echo planar imaging scans were used to acquire 

functional images covering the whole brain (2000ms TR, 20ms TE; 90° flip angle, 

240×240mm FOV; 3 × 3 × 3.5mm voxel size; 0mm slice gap; 35 slices). 

MRI data preprocessing. High-resolution anatomical images were processed 

using the FreeSurfer image analysis suite (89). fMRI data were motion and slice-time 

corrected, temporally high pass filtered with a 100s cutoff, and spatially smoothed with a 

6mm full-width-at-half-maximum Gaussian kernel, all using FSL (88). Data from each 

run were concatenated temporally for each participant after aligning each run using FSL’s 

FLIRT tool and demeaning each voxel’s timecourse. For the ROI classification 

(described below), data were prewhitened for each ROI separately using FSL’s 

MELODIC tool (i.e. principal components were extracted using MELODIC’s default 

dimensionality estimation method with a minimum of 10 components per ROI). 

ROI classification. For each of the 13 ROIs, we used PyMVPA (90) to perform a 

spatiotemporal multivariate classification analysis between the four mental rotation 

directions. Five of these ROIs (LOC, PPC, PCU, DLPFC, and FEF) were functionally-

defined, bilateral masks in MNI space that were then transformed into each participant’s 

native functional space. In a previous study these five ROIs, along with an occipital 

(OCC) ROI that was defined anatomically for each participant, supported information 

about the manipulation of visual imagery (95). The OCC ROI was defined in each 

participant’s native anatomical space using the following labels from FreeSurfer’s 

cortical parcellation: inferior occipital gyrus and sulcus; middle occipital gyrus and sulci; 

superior occipital gyrus; cuneus; occipital pole; superior occipital and transverse occipital 
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sulci; and anterior occipital sulcus (all bilateral). The remaining seven motor network 

ROIs were defined anatomically using the following FreeSurfer labels (again all 

bilateral): CERE (cerebellar cortex); PS (postcentral gyrus); PM (precentral gyrus, central 

sulcus, precentral sulcus [inferior and superior parts]); preMd (posterior third of the 

middle frontal gyrus, lateral half of the posterior third of the superior frontal sulcus); 

preMv (inferior frontal sulcus, opercular part of the inferior frontal gyrus); SMA 

(posterior third of the superior frontal gyrus, medial half of the posterior third of the 

superior frontal sulcus); preSMA (middle third [in the posterior-anterior direction] of the 

superior frontal gyrus). In a post-processing step for each participant, voxels that were 

initially shared between multiple ROIs were assigned to only one ROI using the 

following, descending order of preference: preMv, preMd, SMA, preSMA, PM, PS, 

CERE, DLPFC, FEF, PPC, PCU, LOC, OCC. The ROIs shown in Figure 4.2A & B were 

created as described above but for the MNI template brain. For the spatiotemporal 

multivariate classification we used a linear support vector machine classifier and leave-

one-trial-out cross validation. Because we only considered correct-response trials, a non-

uniform number of trials existed for each condition and participant (35.4 trials per 

condition on average; see Table S4.1 for details). Even though these differences were 

small, we ensured that they could not affect the classification results by including a target 

balancing step in our cross-validation procedure. In this step, each classification fold was 

performed 10 times using random, balanced samples of the training data, and the results 

for that fold were averaged across the 10 bootstrapped folds. For each classification we 

used the spatiotemporal pattern of prewhitened BOLD data from the first 5 TRs of each 

correct response trial, shifted by 1 TR to account for the hemodynamic response function 
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(HRF) delay inherent in fMRI data. We shifted by only 1 TR in order to include as much 

trial data as possible. Pre-whitening reduced each ROI’s voxel-based pattern to an 

average of 72.3 data features (SEM: 3.69). Thus each classification used spatiotemporal 

patterns of, on average, 361 dimensions (SEM: 18.5). Each feature dimension was z-

scored by run prior to classification to reduce between-run differences in signal that may 

have occurred due to scanner or physiological noise. 

Our measure of classifier performance was the correlation between the confusion 

matrix resulting from the four-way classification and the matrix form of the rotation 

similarity structure (see Figure 4.1B). This measure is more sensitive than classification 

accuracy because it also takes into account confusions between conditions that result 

from the hierarchical relationship between the rotations. We used a jackknife procedure 

to perform random-effects analyses evaluating the significance of the correlations (70). In 

the case of noisy estimates such as individual subject confusion matrices, jackknifed 

analyses can provide cleaner results without biasing statistical significance (see ref. (70) 

for more details on this method). In a jackknifed analysis with N subjects, N grand means 

of the data (in this case, confusion matrices) are calculated, each with one subject left out. 

The correlation between each of these grand mean confusion matrices and the model 

similarity structure was then calculated, and a one-tailed t-test evaluated whether the 

Fisher’s Z-transformed correlations were positive (i.e. whether there was a significant 

correlation between confusion matrices and the model similarity structure across 

participants). Because the jackknife procedure reduces the variance between subjects 

artificially, a correction must be applied to the t-statistic calculation; specifically, the 

sample standard deviation between correlations is multiplied by the square root of (N-1). 
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ROI Cross-classification Analysis. To assess whether information about mental 

rotations was shared in a common format between areas, we performed a cross-

classification analysis in which a classifier was trained on data from one ROI and tested 

on data from a second ROI. This analysis used the same procedures as the ROI 

classification analysis described above. However, because the voxel-based feature space 

of each ROI differed, data from pairs of ROIs needed to be transformed into a common 

feature space prior to classification. In order to do this, we first used FSL’s MELODIC 

tool to transform each ROI’s data from voxel space to 50 principal component signals 

using PCA. After this step, each ROI’s pattern had the same dimensionality, but those 

patterns’ features would be unlikely to correspond. Therefore, for each pair of ROIs these 

component signals were matched pairwise as follows in order to maximize the total 

similarity between component signals. First, the correlation distance (1 - |r|) between 

each pair of components was calculated, yielding a 50 × 50 correlation distance matrix. 

Next, the rows and columns of this matrix were reordered using the Hungarian algorithm 

to minimize the matrix trace (107). The components meeting along the diagonal of this 

reordered, trace-minimized matrix defined the pairwise matching. If two components 

were matched by this procedure but were anti-correlated, one component was negated in 

order to produce positively-correlated component pairs. We performed this matching 

procedure for each fold of the cross validation independently, excluding test data in order 

to avoid inflating the similarity between training and testing patterns artificially. Once 

this procedure was completed, data from the two ROIs shared a common feature space, 

i.e. the two feature spaces had the same dimensionality and corresponding features in the 

two spaces were maximally similar. Cross-classification could then proceed by training 
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the classifier on data from one ROI and testing it on data from the other ROI. Each ROI 

served both as the training set and as the testing set, with results averaged between the 

two cases. Figure S3.2 provides a visual schematic of the cross-classification analysis 

procedure. 

Mental/manual rotation cross-classification. To assess whether motor 

involvement in mental rotation resembled motor activity during physical rotation of the 

hands, we performed a cross-classification analysis for each ROI in which we trained a 

classifier on data from the mental rotation trials and tested the classifier on data from the 

manual rotation trials, and vice-versa. Mental rotation trials were given the same labels as 

the corresponding manual rotation trials (e.g. trials in which forward mental rotations 

were carried out were given the same label as trials in which a forward hand rotation was 

prompted). The classification analysis was performed and evaluated identically to the 

ROI classification analysis described above except for the difference between training 

and testing datasets. Note that each cross-validation involved only two folds in this 

analysis (train on mental rotation and test on manual rotation, train on manual rotation 

and test on mental rotation), but the same 10-subfold target balancing procedure was used 

to ensure that training data were balanced. 

ROI BOLD comparison of training groups. To assess whether the two different 

training procedures induced differential brain activity that reflected different cognitive 

strategies employed during mental rotation, for each ROI we conducted a two-tailed 

unpaired t-test across participants comparing trial-related mean blood-oxygenation-level 

dependent (BOLD) activity between the training groups. 
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We initially used FSL’s FEAT tool to perform a first-level whole-brain GLM for 

each participant in which we defined boxcar predictors for correct response and incorrect 

response trials. The resulting voxel-wise beta-weights for the correct response predictor, 

representing the average change in BOLD signal in each voxel during correct response 

mental rotation trials compared to rest, were then averaged across each ROI. This 

procedure yielded a single mean trial-related activity estimate for each participant and 

ROI. For each ROI these values were then partitioned by training group and used to 

perform a two-tailed unpaired t-test. 

Whole brain BOLD comparison of training groups. In a more exploratory 

variant of the ROI-based BOLD comparison of training groups described above, we 

performed a whole-brain gray-matter only BOLD comparison using FSL’s permutation-

based randomise tool with 5000 permutations. The gray matter mask used to restrict the 

analysis was derived from FreeSurfer’s gray matter segmentation of the MNI template 

brain. The input data to randomise were the correct response beta-weight volumes 

resulting from the first-level GLM analysis described above (one volume for each 

participant). The design matrix supplied to randomise defined a single predictor that 

differentiated between non-motoric and motoric participants. T-contrasts were defined for 

non-motoric > motoric and motoric > non-motoric. 

ROI classification comparison of training groups. To assess whether patterns of 

mental rotation-related activity differed between the two training groups, we used a 

procedure similar to that used in the ROI-based BOLD comparison described above to 

compare the results of the ROI classification analyses between the groups. In this case, 

our inputs to the unpaired t-tests were the classification results for each participant and 
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ROI, specifically the Fisher’s Z-transformed correlations between each participant’s 

confusion matrix resulting from the four-way classification and the model mental rotation 

similarity structure. 
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Ch. 5: Discussion 

The preceding three chapters presented evidence that the human mental 

workspace is supported by a fundamentally distributed neural network that spans cortical 

and subcortical structures throughout the brain. The results and implications of these 

findings are summarized below, and the reader is referred to the Discussion section of 

each chapter for a more in depth treatment. 

Study 1 (Ch. 2) found a network of bilateral regions throughout the cortex and 

subcortical regions that supports information specific to mental manipulations of visual 

imagery. Time point by time point classifications revealed that at least some of these 

regions tracked the timecourse of the task that participants performed, showing an 

evolving pattern of information processing from input representation through mental 

operation to output mental representation. The network switched between two 

connectivity profiles depending on whether mental representations were maintained or 

manipulated. 

Study 2 (Ch. 3) found that information about the component processes underlying 

the mental workspace is distributed fundamentally in the brain. All regions studied 

supported information about both the mental representations held in visual working 

memory and the mental operations used to manipulate those representations, running 

directly counter to dominant models of the neural basis of working memory such as that 

proposed by Baddeley (7). Furthermore, information about mental representations was 
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shared in a common format between many regions, and dense, bidirectional, 

hierarchically organized patterns of information flow between regions supported 

information about both mental representations and mental manipulations. These results 

provide strong evidence that the component processes mediated by this network are 

fundamentally distributed rather than being segregated to anatomical modules. 

Study 3 (Ch. 4) found evidence that the mental workspace is implemented via a 

domain general core network that dynamically recruits existing subnetworks for specific 

tasks. Specifically, during mental rotation, widespread information sharing among and 

between core mental workspace nodes and several motor-related regions integrates the 

motor network into a larger, transient and task-specific network. Processing in the nodes 

of this network during mental rotation partially resemble processing involved in physical 

rotations of the hand, suggesting that the motor network is recruited specifically to 

simulate the rotation of mentally imagined stimuli as if they are physical objects. 

However, differences in motor network processing between mental and manual rotation 

also suggest that the motor network is subsumed into the larger mental workspace 

network to participate in purely mental phenomena. 

A primary conclusion from these three studies is that the investigation of high-

order mental phenomena requires a shift in focus away from a currently dominant 

paradigm that seeks to localize cognitive functions to particular, fixed anatomical 

substrates. Instead, the field should seek out and develop new methods and conceptual 

models that explain how higher levels of functional organization in the brain might 

emerge from and operate on top of the lower-order, automatic, domain-specific, 

anatomically-modular levels of processing that have so far dominated the field’s inquiry. 
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Note that anatomically modular and fundamentally distributed modes of information 

processing are not necessarily mutually exclusive. A fundamental insight into the nervous 

system has been that conceptually similar functions may be implemented at multiple 

levels of organization simultaneously. For instance, the cerebral cortex re-implements 

many of the functions of the brain stem, but at a conscious level that allows for finer, 

more flexible control over behavior. Likewise, it should not be inconceivable that even 

within the cortex similar functions are implemented multiple times at different levels of 

organization. In fact, a recent study by Siegel and colleagues (115) has found evidence 

supporting the co-existence of both modular and distributed processing. Their data 

suggest that during initial stages of cortical processing, information is generated by and 

exists locally within anatomical modules. At later stages, however, this information 

becomes distributed widely throughout the cortex such that functional localization breaks 

down. Thus, the development of methods to study the brain as a distributed network may 

complement, rather than replace, existing insights gained by traditional methods such as 

lesion studies that have provided evidence for the functional localization. 

The studies presented in this thesis focused on the neural basis of the mental 

workspace and on the manipulation of visual imagery specifically. Thus, several 

questions regarding the generality of the results remain open for further investigation. For 

instance: 

• Do other domains of processing in the mental workspace entail processes that are 

as fundamentally distributed as visual imagery? A future study could compare 

visual imagery to auditory or tactile imagery. The model proposed in this thesis 

predicts that, much like the occipital cortex and motor network were integrated 
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into a larger network for the spatial manipulation of mental visual images, 

auditory imagery would entail the integration of information from auditory cortex 

into the same core network nodes. A test of the extent of the distribution of 

processing in the mental workspace would be whether information specific to 

auditory mental images occurs in visual cortex and/or visual imagery information 

occurs in auditory cortex. 

• Is the fundamentally distributed processing revealed by the present studies unique 

to high-order cognitive functions such as those of the mental workspace, or might 

such processing occur much more generally in cognition? One possibility is that 

the methods developed in this dissertation have revealed a general property of 

cortical activity to which previous methods were insensitive. A future study could 

investigate this possibility by using the present methods to compare visually 

imagined representations with physically perceived stimuli. Do straightforward 

visual perceptual processes such as object categorization (56) also entail the 

widespread sharing of information in the same regions as those studied here? 

• Are mental workspace-like abilities and/or the fundamentally distributed neural 

processes underlying them unique to humans (119–128)? Future work could 

investigate the extent to which chimpanzees or other non-human animals can 

volitionally manipulate mental representations, and also differences in the 

functional and structural connectivity between species that may underlie the 

uniqueness of human cognition. 

• How do differences in the organization of the mental workspace network account 

for differences in cognitive style, such as those employed by “visual” or 
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“propositional” thinkers (129–132)? A future study could compare differences in 

the sharing and distribution of visual and propositional mental representations 

between participants with either visual or propositional cognitive tendencies. 

• This thesis claims that the abilities studied here lie at the root of the human 

imagination that enables creative abilities such as scientific and artistic thought. 

However, the link between the ability to mentally manipulate imagery and 

creative ability was not tested directly. Future studies could investigate whether 

mental manipulation ability relates to creativity (20) and whether information is 

integrated between the regions revealed by the current studies and other networks 

known to play a role in creative cognition (6, 133, 134). 

• Could the methods developed here be used to investigate the neural bases of other 

complex cognitive processes such as intelligence (36), learning (50), development 

(135), attention (103), language (2), art (6), or social cognition (136)? 
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Appendix I:   Supplemental Tables 

Table S2.1. Response time v. classification accuracy control analysis results 

To verify that our ROI classification results were not influenced by response time (RT) differences between 

the construct parts and the deconstruct figure conditions, we performed a cross-subject correlation analysis 

for each ROI between classification accuracy and RT difference as in ref. (137). In no ROI was there a 

significant correlation between RT difference and accuracy (all p’s uncorrected). In fact, for our four 

primary areas of interest there are non-significant inverse correlations between the two, suggesting that, if 

anything, larger reaction time differences were associated with lower classification accuracies. 

ROI r p 
OCC -0.161 0.566 
PPC -0.265 0.340 

DLPFC -0.341 0.214 
PCU -0.221 0.428 
FEF -0.142 0.613 

CERE 0.00320 0.991 
SEF -0.225 0.421 

MFC 0.300 0.278 
FO 0.230 0.411 

MTL 0.267 0.335 
PITC -0.305 0.268 

THAL 0.347 0.205 
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Table S2.2. ROI two-way classification results 

Statistical results of two-way classification analyses in each ROI. t-tests are one-tailed, compared to 50%. 

pcorr values are false discovery rate corrected p values. Abbreviations: CP = construct parts; DF = 

deconstruct figure; MP = maintain parts; MF = maintain figure. ROI abbreviations are as in Figure 2.2. 

accuracy (%) t p pcorr 
ROI CP v. DF MP v MF CP v. DF MP v MF CP v. DF MP v MF CP v. DF MP v MF 

OCC 61.4 65.8 3.75 7.54 1.07e-3 1.35e-6 4.28e-3 3.24e-5 
PPC 61.5 65.4 4.25 5.62 4.08e-4 3.16e-5 1.96e-3 2.53e-4 

DLPFC 55.8 62.3 2.71 6.18 8.52e-3 1.19e-5 0.0205 1.43e-4 
PCU 60.2 58.8 3.58 3.51 1.51e-3 1.74e-3 5.17e-3 5.21e-3 
FEF 56.0 57.8 2.16 2.78 0.0244 7.33e-3 0.0489 0.0195 

CERE 56.5 51.5 2.38 0.505 0.0160 0.311 0.0350 0.393 
SEF 51.5 55.8 0.778 1.79 0.225 0.0471 0.300 0.0870 

MFC 50.6 55.7 0.283 4.36 0.391 3.28e-4 0.446 1.96e-3 
FO 49.2 53.7 -0.345 1.56 0.632 0.0700 0.690 0.112 

MTL 48.3 53.6 -0.577 1.28 0.713 0.110 0.744 0.166 
PITC 53.5 52.9 1.59 1.14 0.0675 0.137 0.112 0.193 

THAL 47.9 51.1 -0.864 -0.397 0.799 0.349 0.799 0.418 
 

 

Table S2.3. Correlation-based classification results 

Statistical results of correlation analyses between the model similarity structure from Figure 2.3B and 

confusion matrices from four-way classifications in each ROI. 

ROI r p pcorr 
OCC 0.970 6.48e-5 3.89e-4 
PPC 0.977 2.91e-5 3.49e-4 

DLPFC 0.921 1.18e-3 2.82e-3 
PCU 0.911 1.66e-3 3.33e-3 
FEF 0.955 2.22e-4 6.66e-4 

CERE 0.583 0.129 0.165 
SEF 0.734 0.0381 0.0654 

MFC 0.638 0.0887 0.133 
FO 0.355 0.388 0.388 

MTL 0.444 0.27 0.295 
PITC 0.957 1.90e-4 6.66e-4 

THAL -0.573 0.137 0.165 
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Table S2.4. Peak correlation time analysis results 

Statistical results of linear contrast analyses on peak correlation times from analysis shown in Figure 2.4. 

LC = linear contrast result. C1 = contrast 1 (input: -1, operation: -1, output: 2). C2 = contrast 2 (input: -1, 

operation: 1, output: 0). p-values for negative contrast results are not shown. 

LC F p 
ROI C1 C2 C1 C2 C1 C2 

OCC 5.65 1.90 178. 60.0 5.19e-12 1.00e-7 
PPC 5.40 2.19 9.24 4.56 5.82e-3 0.0435 

DLPFC 6.06 1.81 46.5 12.4 7.51e-7 1.92e-3 
PCU 4.81 2.93 48.9 54.4 3.98e-7 1.66e-7 
FEF 3.66 2.27 0.343 0.396 0.564 0.536 

CERE -1.46 1.31 0.0237 0.0574 - 0.813 
SEF -3.87 2.19 1080. 1030. - <1e-12 

MFC -6.69 -0.381 0.894 8.68e-3 - - 
FO 3.36 -1.13 0.156 0.0532 0.697 - 

MTL 3.14 0.136 7.70 0.0432 0.0111 0.837 
PITC -2.84 1.27 9.22 5.54 - 0.0280 

THAL -5.76 -2.01 3.79 1.38 - - 
 

 

Table S3.1. Behavioral results 

Mean number of correct trials per condition across all subjects. 

Shape Mean S.E.M. Operation Mean S.E.M 

 
57.2 (95.3%) 0.642 

 
57.5 (95.8%) 0.393 

 
58.4 (97.3%) 0.520  57.8 (96.3%) 0.308 

 
56.6 (94.3%) 0.578  57.4 (95.7%) 0.698 

 
57.5 (95.8%) 0.579  57.0 (95.0%) 0.757 
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Table S3.2. ROI control analysis results 

Control ROI classification analyses with thalamus and ventricle masks. z: Mean of jackknifed Fisher’s Z-

transformed correlations between the classification confusion matrices and the model similarity structures 

from Figure 3.1. t(18): Statistical results of one-tailed t-tests on the jackknifed Fisher’s Z-transformed 

correlations, compared to zero. p: p-values from the t-tests. 

Representation Manipulation 
ROI z t(18) p z t(18) p 

THALAMUS 0.516 1.000 0.165 -0.607 -2.79 0.994 
VENTRICLE 0.270 0.620 0.271 -0.133 -0.450 0.671 

 

 

Table S3.3. Shuffled-label control classification results 

z: Mean of jackknifed Fisher’s Z-transformed correlations between the classification confusion matrices 

and the model similarity structures from Figure 3.1. t(18): Statistical results of one-tailed t-tests on the 

jackknifed Fisher’s Z-transformed correlations, compared to zero. p: p-values from the t-tests. 

Representation Manipulation 
ROI z t(18) p z t(18) p 

all -0.275 -0.917 0.814 -0.226 -0.836 0.793 
OCC -0.200 -0.592 0.719 -0.740 -3.49 0.999 
PPC -0.132 -0.682 0.748 -0.014 -0.044 0.517 
PCU 0.148 0.519 0.305 -0.645 -3.04 0.996 
LOC 0.293 0.962 0.174 -0.616 -1.77 0.953 
FEF -0.342 -1.21 0.880 -0.256 -1.21 0.879 

DLPFC -0.472 -1.19 0.875 0.185 0.457 0.327 
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Table S3.4. Shuffled-label control cross-classification results 

z: Mean of jackknifed Fisher’s Z-transformed correlations between the classification confusion matrices 

and the model similarity structures from Figure 3.1. t(18): Statistical results of one-tailed t-tests on the 

jackknifed Fisher’s Z-transformed correlations, compared to zero. p: p-values from the t-tests. pcorr: False 

discovery rate corrected p-values across the 30 comparisons. 

Representation Manipulation 
ROI1 ROI2 z t(18) p pcorr z t(18) p pcorr 

DLPFC FEF 0.309 1.285 0.107 0.403 0.404 2.108 0.025 0.370 
DLPFC OCC -0.106 -0.391 0.650 0.843 -0.045 -0.165 0.565 0.814 
DLPFC PCU -0.068 -0.494 0.687 0.843 0.097 0.710 0.243 0.814 
DLPFC LOC 0.258 1.863 0.039 0.403 0.037 0.185 0.428 0.814 
DLPFC PPC -0.292 -1.595 0.936 0.962 -0.166 -0.744 0.767 0.822 

FEF OCC 0.000 0.001 0.500 0.836 0.011 0.080 0.469 0.814 
FEF PCU 0.368 1.645 0.059 0.403 0.065 0.332 0.372 0.814 
FEF LOC 0.243 1.002 0.165 0.494 -0.065 -0.472 0.679 0.814 
FEF PPC -0.001 -0.004 0.501 0.836 -0.048 -0.259 0.601 0.814 
OCC PCU -0.526 -1.876 0.962 0.962 -0.124 -0.550 0.705 0.814 
OCC LOC 0.277 1.411 0.088 0.403 -0.010 -0.032 0.513 0.814 
OCC PPC -0.050 -0.235 0.591 0.843 -0.366 -1.208 0.879 0.879 
PCU LOC 0.208 0.594 0.280 0.700 0.100 0.382 0.353 0.814 
PCU PPC 0.055 0.264 0.397 0.836 -0.027 -0.189 0.574 0.814 
LOC PPC -0.133 -0.626 0.730 0.843 -0.099 -0.472 0.679 0.814 
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Table S3.5. Shuffled-label control information flow classification results 

z: Mean of jackknifed Fisher’s Z-transformed correlations between the classification confusion matrices 

and the model similarity structures from Figure 3.1. t(18): Statistical results of one-tailed t-tests on the 

jackknifed Fisher’s Z-transformed correlations, compared to zero. p: p-values from the t-tests. pcorr: False 

discovery rate corrected p-values across the 60 comparisons. 

Representation Manipulation 
ROI1 ROI2 z t(18) p pcorr z t(18) p pcorr 

DLPFC FEF 0.128 0.378 0.355 1.000 -0.445 -1.370 0.906 1.000 
DLPFC OCC 0.242 0.531 0.301 1.000 -0.216 -1.106 0.858 1.000 
DLPFC PCU -0.198 -0.758 0.771 1.000 0.377 1.038 0.157 1.000 
DLPFC LOC 0.556 2.308 0.017 0.331 0.550 1.490 0.077 0.921 
DLPFC PPC -0.289 -0.813 0.787 1.000 -0.439 -1.651 0.942 1.000 

FEF DLPFC 0.002 0.005 0.498 1.000 -0.026 -0.065 0.526 1.000 
FEF OCC -0.168 -1.073 0.851 1.000 -0.412 -1.144 0.866 1.000 
FEF PCU -0.179 -0.541 0.702 1.000 -0.192 -0.546 0.704 1.000 
FEF LOC -0.143 -0.45 0.671 1.000 0.158 0.540 0.298 1.000 
FEF PPC 0.244 0.816 0.213 1.000 -0.560 -2.090 0.974 1.000 
OCC DLPFC -0.461 -1.476 0.921 1.000 0.235 0.698 0.247 1.000 
OCC FEF -0.226 -0.669 0.744 1.000 0.241 0.491 0.315 1.000 
OCC PCU 0.287 0.825 0.21 1.000 0.879 3.742 0.001 0.045 
OCC LOC -0.118 -0.401 0.654 1.000 -0.549 -1.658 0.943 1.000 
OCC PPC 0.178 0.437 0.333 1.000 -0.251 -1.082 0.853 1.000 
PCU DLPFC -0.162 -0.582 0.716 1.000 0.136 0.482 0.318 1.000 
PCU FEF -0.117 -0.233 0.591 1.000 -0.261 -1.372 0.907 1.000 
PCU OCC 0.189 0.720 0.240 1.000 0.418 1.819 0.043 0.642 
PCU LOC 0.717 2.602 0.009 0.270 0.301 0.945 0.178 1.000 
PCU PPC -0.038 -0.140 0.555 1.000 -0.564 -1.585 0.935 1.000 
LOC DLPFC -0.040 -0.125 0.549 1.000 -0.791 -3.860 0.999 1.000 
LOC FEF 0.028 0.100 0.461 1.000 -0.559 -2.976 0.996 1.000 
LOC OCC -0.320 -1.243 0.885 1.000 -0.473 -1.801 0.956 1.000 
LOC PCU -0.471 -1.832 0.958 1.000 -0.541 -2.509 0.989 1.000 
LOC PPC -0.025 -0.074 0.529 1.000 -0.422 -1.557 0.932 1.000 
PPC DLPFC -0.021 -0.066 0.526 1.000 -0.953 -4.081 1.000 1.000 
PPC FEF 0.146 0.374 0.356 1.000 -0.124 -0.802 0.783 1.000 
PPC OCC 0.154 0.457 0.326 1.000 -0.394 -1.285 0.892 1.000 
PPC PCU -0.073 -0.263 0.602 1.000 -0.283 -0.798 0.782 1.000 
PPC LOC 0.301 1.092 0.145 1.000 -0.359 -1.592 0.936 1.000 

 



98 

Table S4.1. Behavioral results 

Mean number of correct trials per condition across all subjects. 

Rotation Mean S.E.M. % Correct 

  34.2 0.909 85.5 

 35.2 1.04 87.9 

 
36. 0.689 90. 

 
36.3 0.509 90.7 

 

 

Table S4.2. Comparison of univariate activity between training groups 

Comparison of ROI-based univariate mental rotation-related activity between training groups. For each 

ROI, a two-tailed, unpaired t-test compared the mean activity level between the two groups. See Figure 4.2 

for abbreviations. ββββ: GLM beta-weight representing mean mental rotation-related change in brain activity 

in the specified ROI. S.E.M.: standard error of the mean of the beta-weights across participants. pcorr: FDR-

corrected p-values across the 13 ROIs. 

non-motoric group motoric group unpaired t-test 
ROI ββββ S.E.M. ββββ S.E.M. t(22) P pcorr 

CERE 11.7 3.64 12.0 4.83 -0.0548 0.957 0.957 
PS 19.8 5.13 12.0 6.52 0.937 0.359 0.916 

PM 29.5 3.70 27.5 5.89 0.290 0.775 0.916 
preMd 11.9 7.97 13.6 8.26 -0.147 0.885 0.957 
preMv -0.224 4.85 16.5 10.3 -1.47 0.156 0.916 

SMA 30.5 4.99 22.0 7.30 0.951 0.352 0.916 
preSMA -9.79 4.36 -2.72 7.57 -0.809 0.427 0.916 

OCC 48.6 3.63 54.6 8.34 -0.654 0.520 0.916 
LOC 26.3 9.16 20.5 8.39 0.465 0.646 0.916 
PCU 38.5 10.3 52.4 16.0 -0.729 0.474 0.916 
PPC 48.2 6.34 42.0 7.12 0.658 0.518 0.916 
FEF 31.2 5.63 27.9 6.83 0.373 0.713 0.916 

DLPFC 22.2 4.44 19.0 5.94 0.433 0.669 0.916 
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Table S4.3. Comparison of ROI classification between training groups 

For each ROI, a two-tailed, unpaired t-test compared the classification results between the two groups. See 

Figure 4.2 for abbreviations. z: mean jackknifed Fisher’s Z-transformed correlation between the 

classification confusion matrices and the model similarity structure from Figure 4.1B. S.E.M.: standard 

error of the mean of the Z-transformed correlations across participants. pcorr: FDR-corrected p-values across 

the 13 ROIs. 

non-motoric group motoric group unpaired t-test 
ROI z S.E.M. z S.E.M. t(22) p pcorr 

CERE 0.429 0.110 0.270 0.102 1.06 0.300 0.885 
PS 0.300 0.079 0.482 0.122 -1.25 0.224 0.885 

PM 0.944 0.145 0.764 0.143 0.881 0.388 0.885 
preMd 0.561 0.100 0.405 0.132 0.946 0.355 0.885 
preMv 0.338 0.110 0.613 0.0724 -2.09 0.0489 0.635 

SMA 0.639 0.120 0.518 0.156 0.616 0.544 0.885 
preSMA 0.393 0.0662 0.391 0.188 0.0127 0.990 0.990 

OCC 0.758 0.0972 0.725 0.0751 0.266 0.793 0.990 
LOC 0.221 0.103 0.211 0.102 0.0676 0.947 0.990 
PCU 0.645 0.119 0.662 0.146 -0.0921 0.927 0.990 
PPC 0.687 0.143 0.788 0.0667 -0.644 0.526 0.885 
FEF 0.426 0.132 0.560 0.0932 -0.827 0.417 0.885 

DLPFC 0.584 0.109 0.658 0.109 -0.478 0.637 0.921 
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Table S4.4. Comparison of ROI cross-classification between training groups 

For each significant pair of ROIs in the analysis presented in Figure 4.3, a two-tailed, unpaired t-test 

compared the cross-classification results between the two groups. See Figure 4.2 for abbreviations. z: mean 

jackknifed Fisher’s Z-transformed correlation between the cross-classification confusion matrices and the 

model similarity structure from Figure 4.1B. S.E.M.: standard error of the mean of the Z-transformed 

correlations across participants. pcorr: FDR-corrected p-values across the 33 significant ROI pairs. 

non-motoric group motoric group unpaired t-test 
ROI 1 ROI 2 z S.E.M. z S.E.M. t(22) p pcorr 
CERE SMA 0.131 0.0596 0.203 0.0706 -0.780 0.444 0.829 
CERE PCU 0.00383 0.0560 0.138 0.0606 -1.62 0.119 0.576 

PS preMd 0.0768 0.0461 0.131 0.0666 -0.666 0.513 0.829 
PS FEF 0.0639 0.0416 0.186 0.0679 -1.53 0.140 0.576 
PS DLPFC 0.0508 0.0434 0.127 0.0648 -0.979 0.338 0.798 

PM preMd 0.187 0.0804 0.183 0.0536 0.0467 0.963 0.963 
PM PCU 0.114 0.0711 0.199 0.0735 -0.834 0.413 0.829 
PM PPC 0.130 0.0326 0.175 0.0728 -0.557 0.583 0.837 
PM FEF 0.207 0.0481 0.261 0.0679 -0.642 0.527 0.829 
PM DLPFC 0.135 0.0565 0.162 0.0661 -0.310 0.759 0.921 

preMd preMv 0.0975 0.0469 0.229 0.0821 -1.39 0.179 0.588 
preMd SMA 0.167 0.0570 0.0517 0.0656 1.33 0.197 0.588 
preMd LOC 0.115 0.0484 0.0853 0.0627 0.372 0.713 0.910 
preMd PCU 0.0753 0.0501 0.227 0.0463 -2.23 0.0362 0.576 
preMd PPC 0.126 0.0500 0.220 0.0528 -1.28 0.214 0.588 
preMd FEF 0.141 0.0652 0.190 0.0544 -0.576 0.570 0.837 
preMd DLPFC 0.146 0.0318 0.135 0.0579 0.174 0.863 0.946 
preMv SMA 0.131 0.0550 0.168 0.0723 -0.41 0.686 0.910 
preMv FEF 0.0901 0.0451 0.261 0.0833 -1.80 0.0855 0.576 
preMv DLPFC 0.101 0.0366 0.336 0.0826 -2.60 0.0164 0.543 

SMA PPC 0.160 0.0496 0.154 0.0619 0.074 0.942 0.963 
SMA FEF 0.0715 0.0740 0.145 0.0505 -0.818 0.422 0.829 
SMA DLPFC 0.142 0.0568 0.210 0.0716 -0.749 0.462 0.829 

preSMA FEF 0.0865 0.0498 0.141 0.0648 -0.668 0.511 0.829 
preSMA DLPFC 0.163 0.0677 0.134 0.0412 0.367 0.717 0.910 

OCC PCU 0.103 0.0596 0.125 0.0870 -0.208 0.837 0.946 
OCC PPC 0.0642 0.0281 0.207 0.0836 -1.62 0.119 0.576 
LOC PPC 0.0777 0.0387 0.205 0.0836 -1.38 0.181 0.588 
PCU PPC 0.142 0.0537 0.119 0.0631 0.281 0.782 0.921 
PCU FEF 0.125 0.0630 0.110 0.0840 0.142 0.889 0.946 
PPC FEF 0.0839 0.0595 0.180 0.0699 -1.05 0.307 0.779 
PPC DLPFC 0.0851 0.0648 0.258 0.0558 -2.02 0.0553 0.576 
FEF DLPFC 0.126 0.0422 0.233 0.0525 -1.59 0.127 0.576 
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Table S4.5. Comparison of mental/manual cross-classification between training groups 

For each significant ROI in the analysis presented in Figure 4.4, a two-tailed, unpaired t-test compared the 

cross-classification results between the two groups. See Figure 4.2 for abbreviations. z: mean jackknifed 

Fisher’s Z-transformed correlation between the cross-classification confusion matrices and the model 

similarity structure from Figure 4.1B. S.E.M.: standard error of the mean of the Z-transformed correlations 

across participants. pcorr: FDR-corrected p-values across the 5 significant ROIs. 

non-motoric group motoric group unpaired t-test 
ROI z S.E.M. z S.E.M. t(22) p pcorr 
PM 0.174 0.0721 0.150 0.0660 0.241 0.811 0.811 

preMv -0.0690 0.0519 0.0953 0.0495 -2.29 0.0319 0.160 
OCC 0.117 0.0836 0.167 0.0619 -0.487 0.631 0.789 
PCU 0.159 0.0824 0.0843 0.0820 0.643 0.527 0.789 
PPC 0.159 0.116 0.279 0.0527 -0.945 0.355 0.789 
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Appendix II:   Supplemental Figures 

Figure S2.1. ROI-classification to control for ROI size 

A. Classification results using the same 

procedure as described in Figure 2.3, with 

two modifications. First, to verify that the 

inability to classify between conditions in 

SEF, FO, MTL, and THAL was not due to 

ROI size, the union of these ROIs was 

constructed and the classification 

performed within this “Union” ROI. The 

average size of this ROI across participants 

was 360 voxels. Second, to verify that 

classification results in the remaining eight 

ROIs did not depend on ROI size, we 

constructed new ROIs by eroding each 

original ROI until it consisted of the same 

number of voxels as the smallest of the 

eight ROIs (127 voxels on average across 

subjects). B. Confusion matrices and 

correlation analysis results as in Figure 3C 

but using the ROIs described above. 
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Figure S3.1. Trial schematic 

A 2s prompt screen indicated the shape and operation for the current trial. This was followed by a 6s blank 

screen during which the participant performed the indicated operation on the indicated shape. Next, a 2s 

test screen appeared, during which the participant indicated whether a displayed shape matched the output 

of the indicated operation. Finally, the participant was given feedback on their response. 
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Figure S3.2. Visual schematic of cross-classification analysis procedure 

A. Functional data from each ROI (PPC 

shown here) were transformed from voxel 

space to 50 principal component signals using 

PCA. B. For a single cross-classification 

analysis between two ROIs (PPC and PCU 

here), the correlation distance between each 

pair of principal component signals was 

calculated. This calculation was performed 

independently for each classification fold, 

leaving out the test data from that fold 

(visualized here as a gap in the data that was 

used to calculate distances). This resulted in a 

50 × 50 correlation distance matrix. C. The 

trace of this correlation distance matrix was 

minimized using the Hungarian algorithm in 

order to compute a matching of component 

signals between the two ROIs that maximized 

their pairwise similarity (i.e. minimized their 

correlation distance). D. This procedure 

resulted in a common 50-dimensional feature 

space shared between the two ROIs. Matched 

principal component signals between ROIs 

were maximally similar to each other. E. A 

cross-classification analysis was performed 

using these transformed functional data. The classifier was trained on data from one ROI (PPC in this case) 

and tested on data from the other ROI (PCU in this case). Other than the difference between training and 

testing data, the classification was carried out identically to that of the ROI-based analyses in Figure 3.2. 
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Figure S3.3. Visual schematic of information flow classification analysis procedure 

A. Functional data from each ROI (PPC shown here) 

were transformed from voxel space to 10 principal 

component signals using PCA. B. For a given 

directed ROI pair (PPC to PCU here) and condition 

(Shape 1 and clockwise rotation here), the Granger 

causality from the source ROI to the destination ROI 

was calculated for each pair of principal component 

signals (PPC component 1 and PCU component 3 

here), using only data from trials of that condition. 

C. This resulted in a 10 × 10 Granger-causal graph 

for each participant, directed ROI pair, and 

condition. D. The resulting 16 Granger-causal 

graphs for a given participant and directed ROI pair 

could be labeled based on either shape or operation. 

E. A classification analysis then proceeded as in the 

other analyses, except that either leave-one-shape-

out or leave-one-operation-out cross validation was 

performed. 
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Figure S4.1. The eight figures used for mental rotation 

Figures were shown during the prompt phase of the trial either as above or flipped across the y-axis, and 

unrotated, rotated 180° around the x-axis, or rotated 180° around the z-axis. 
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Figure S4.2. Individual mean confusion matrices from the ROI classification analysis 

Compare to model similarity structure in Figure 1B. Values represent percent of cross-validation folds in 

which each target/prediction combination occurred. Color scaling for visualization was performed 

separately for each confusion matrix, because only relative values matter for the correlation analysis. 

Matrix elements are ordered as in Figure 1B, and abbreviations are as in Figure 2. 
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